Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
import torch | |
import torch.nn.functional as F | |
from lavis.models.ulip_models.pointbert import misc | |
if torch.cuda.is_available(): | |
from knn_cuda import KNN | |
knn = KNN(k=4, transpose_mode=False) | |
else: | |
knn=None | |
class DGCNN(nn.Module): | |
def __init__(self, encoder_channel, output_channel): | |
super().__init__() | |
''' | |
K has to be 16 | |
''' | |
self.input_trans = nn.Conv1d(encoder_channel, 128, 1) | |
self.layer1 = nn.Sequential(nn.Conv2d(256, 256, kernel_size=1, bias=False), | |
nn.GroupNorm(4, 256), | |
nn.LeakyReLU(negative_slope=0.2) | |
) | |
self.layer2 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=1, bias=False), | |
nn.GroupNorm(4, 512), | |
nn.LeakyReLU(negative_slope=0.2) | |
) | |
self.layer3 = nn.Sequential(nn.Conv2d(1024, 512, kernel_size=1, bias=False), | |
nn.GroupNorm(4, 512), | |
nn.LeakyReLU(negative_slope=0.2) | |
) | |
self.layer4 = nn.Sequential(nn.Conv2d(1024, 1024, kernel_size=1, bias=False), | |
nn.GroupNorm(4, 1024), | |
nn.LeakyReLU(negative_slope=0.2) | |
) | |
self.layer5 = nn.Sequential(nn.Conv1d(2304, output_channel, kernel_size=1, bias=False), | |
nn.GroupNorm(4, output_channel), | |
nn.LeakyReLU(negative_slope=0.2) | |
) | |
def get_graph_feature(coor_q, x_q, coor_k, x_k): | |
# coor: bs, 3, np, x: bs, c, np | |
k = 4 | |
batch_size = x_k.size(0) | |
num_points_k = x_k.size(2) | |
num_points_q = x_q.size(2) | |
with torch.no_grad(): | |
_, idx = knn(coor_k, coor_q) # bs k np | |
assert idx.shape[1] == k | |
idx_base = torch.arange(0, batch_size, device=x_q.device).view(-1, 1, 1) * num_points_k | |
idx = idx + idx_base | |
idx = idx.view(-1) | |
num_dims = x_k.size(1) | |
x_k = x_k.transpose(2, 1).contiguous() | |
feature = x_k.view(batch_size * num_points_k, -1)[idx, :] | |
feature = feature.view(batch_size, k, num_points_q, num_dims).permute(0, 3, 2, 1).contiguous() | |
x_q = x_q.view(batch_size, num_dims, num_points_q, 1).expand(-1, -1, -1, k) | |
feature = torch.cat((feature - x_q, x_q), dim=1) | |
return feature | |
def forward(self, f, coor): | |
# f: B G C | |
# coor: B G 3 | |
# bs 3 N bs C N | |
feature_list = [] | |
coor = coor.transpose(1, 2).contiguous() # B 3 N | |
f = f.transpose(1, 2).contiguous() # B C N | |
f = self.input_trans(f) # B 128 N | |
f = self.get_graph_feature(coor, f, coor, f) # B 256 N k | |
f = self.layer1(f) # B 256 N k | |
f = f.max(dim=-1, keepdim=False)[0] # B 256 N | |
feature_list.append(f) | |
f = self.get_graph_feature(coor, f, coor, f) # B 512 N k | |
f = self.layer2(f) # B 512 N k | |
f = f.max(dim=-1, keepdim=False)[0] # B 512 N | |
feature_list.append(f) | |
f = self.get_graph_feature(coor, f, coor, f) # B 1024 N k | |
f = self.layer3(f) # B 512 N k | |
f = f.max(dim=-1, keepdim=False)[0] # B 512 N | |
feature_list.append(f) | |
f = self.get_graph_feature(coor, f, coor, f) # B 1024 N k | |
f = self.layer4(f) # B 1024 N k | |
f = f.max(dim=-1, keepdim=False)[0] # B 1024 N | |
feature_list.append(f) | |
f = torch.cat(feature_list, dim=1) # B 2304 N | |
f = self.layer5(f) # B C' N | |
f = f.transpose(-1, -2) | |
return f | |
### ref https://github.com/Strawberry-Eat-Mango/PCT_Pytorch/blob/main/util.py ### | |
def knn_point(nsample, xyz, new_xyz): | |
""" | |
Input: | |
nsample: max sample number in local region | |
xyz: all points, [B, N, C] | |
new_xyz: query points, [B, S, C] | |
Return: | |
group_idx: grouped points index, [B, S, nsample] | |
""" | |
sqrdists = square_distance(new_xyz, xyz) | |
_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False) | |
return group_idx | |
def square_distance(src, dst): | |
""" | |
Calculate Euclid distance between each two points. | |
src^T * dst = xn * xm + yn * ym + zn * zm; | |
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn; | |
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm; | |
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2 | |
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst | |
Input: | |
src: source points, [B, N, C] | |
dst: target points, [B, M, C] | |
Output: | |
dist: per-point square distance, [B, N, M] | |
""" | |
B, N, _ = src.shape | |
_, M, _ = dst.shape | |
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1)) | |
dist += torch.sum(src ** 2, -1).view(B, N, 1) | |
dist += torch.sum(dst ** 2, -1).view(B, 1, M) | |
return dist | |
class Group(nn.Module): | |
def __init__(self, num_group, group_size): | |
super().__init__() | |
self.num_group = num_group | |
self.group_size = group_size | |
self.knn = KNN(k=self.group_size, transpose_mode=True) | |
def forward(self, xyz): | |
''' | |
input: B N 3 | |
--------------------------- | |
output: B G M 3 | |
center : B G 3 | |
''' | |
batch_size, num_points, _ = xyz.shape | |
# fps the centers out | |
center = misc.fps(xyz, self.num_group) # B G 3 | |
# knn to get the neighborhood | |
# _, idx = self.knn(xyz, center) # B G M | |
idx = knn_point(self.group_size, xyz, center) # B G M | |
assert idx.size(1) == self.num_group | |
assert idx.size(2) == self.group_size | |
idx_base = torch.arange(0, batch_size, device=xyz.device).view(-1, 1, 1) * num_points | |
idx = idx + idx_base | |
idx = idx.view(-1) | |
neighborhood = xyz.view(batch_size * num_points, -1)[idx, :] | |
neighborhood = neighborhood.view(batch_size, self.num_group, self.group_size, 3).contiguous() | |
# normalize | |
neighborhood = neighborhood - center.unsqueeze(2) | |
return neighborhood, center | |
class Encoder(nn.Module): | |
def __init__(self, encoder_channel): | |
super().__init__() | |
self.encoder_channel = encoder_channel | |
self.first_conv = nn.Sequential( | |
nn.Conv1d(3, 128, 1), | |
nn.BatchNorm1d(128), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(128, 256, 1) | |
) | |
self.second_conv = nn.Sequential( | |
nn.Conv1d(512, 512, 1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(512, self.encoder_channel, 1) | |
) | |
def forward(self, point_groups): | |
''' | |
point_groups : B G N 3 | |
----------------- | |
feature_global : B G C | |
''' | |
bs, g, n, _ = point_groups.shape | |
point_groups = point_groups.reshape(bs * g, n, 3) | |
# encoder | |
feature = self.first_conv(point_groups.transpose(2, 1)) # BG 256 n | |
feature_global = torch.max(feature, dim=2, keepdim=True)[0] # BG 256 1 | |
feature = torch.cat([feature_global.expand(-1, -1, n), feature], dim=1) # BG 512 n | |
feature = self.second_conv(feature) # BG 1024 n | |
feature_global = torch.max(feature, dim=2, keepdim=False)[0] # BG 1024 | |
return feature_global.reshape(bs, g, self.encoder_channel) | |
class Decoder(nn.Module): | |
def __init__(self, encoder_channel, num_fine): | |
super().__init__() | |
self.num_fine = num_fine | |
self.grid_size = 2 | |
self.num_coarse = self.num_fine // 4 | |
assert num_fine % 4 == 0 | |
self.mlp = nn.Sequential( | |
nn.Linear(encoder_channel, 1024), | |
nn.ReLU(inplace=True), | |
nn.Linear(1024, 1024), | |
nn.ReLU(inplace=True), | |
nn.Linear(1024, 3 * self.num_coarse) | |
) | |
self.final_conv = nn.Sequential( | |
nn.Conv1d(encoder_channel + 3 + 2, 512, 1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(512, 512, 1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(512, 3, 1) | |
) | |
a = torch.linspace(-0.05, 0.05, steps=self.grid_size, dtype=torch.float).view(1, self.grid_size).expand( | |
self.grid_size, self.grid_size).reshape(1, -1) | |
b = torch.linspace(-0.05, 0.05, steps=self.grid_size, dtype=torch.float).view(self.grid_size, 1).expand( | |
self.grid_size, self.grid_size).reshape(1, -1) | |
self.folding_seed = torch.cat([a, b], dim=0).view(1, 2, self.grid_size ** 2) # 1 2 S | |
def forward(self, feature_global): | |
''' | |
feature_global : B G C | |
------- | |
coarse : B G M 3 | |
fine : B G N 3 | |
''' | |
bs, g, c = feature_global.shape | |
feature_global = feature_global.reshape(bs * g, c) | |
coarse = self.mlp(feature_global).reshape(bs * g, self.num_coarse, 3) # BG M 3 | |
point_feat = coarse.unsqueeze(2).expand(-1, -1, self.grid_size ** 2, -1) # BG (M) S 3 | |
point_feat = point_feat.reshape(bs * g, self.num_fine, 3).transpose(2, 1) # BG 3 N | |
seed = self.folding_seed.unsqueeze(2).expand(bs * g, -1, self.num_coarse, -1) # BG 2 M (S) | |
seed = seed.reshape(bs * g, -1, self.num_fine).to(feature_global.device) # BG 2 N | |
feature_global = feature_global.unsqueeze(2).expand(-1, -1, self.num_fine) # BG 1024 N | |
feat = torch.cat([feature_global, seed, point_feat], dim=1) # BG C N | |
center = coarse.unsqueeze(2).expand(-1, -1, self.grid_size ** 2, -1) # BG (M) S 3 | |
center = center.reshape(bs * g, self.num_fine, 3).transpose(2, 1) # BG 3 N | |
fine = self.final_conv(feat) + center # BG 3 N | |
fine = fine.reshape(bs, g, 3, self.num_fine).transpose(-1, -2) | |
coarse = coarse.reshape(bs, g, self.num_coarse, 3) | |
return coarse, fine | |
class DiscreteVAE(nn.Module): | |
def __init__(self, config, **kwargs): | |
super().__init__() | |
self.group_size = config.group_size | |
self.num_group = config.num_group | |
self.encoder_dims = config.encoder_dims | |
self.tokens_dims = config.tokens_dims | |
self.decoder_dims = config.decoder_dims | |
self.num_tokens = config.num_tokens | |
self.group_divider = Group(num_group=self.num_group, group_size=self.group_size) | |
self.encoder = Encoder(encoder_channel=self.encoder_dims) | |
self.dgcnn_1 = DGCNN(encoder_channel=self.encoder_dims, output_channel=self.num_tokens) | |
self.codebook = nn.Parameter(torch.randn(self.num_tokens, self.tokens_dims)) | |
self.dgcnn_2 = DGCNN(encoder_channel=self.tokens_dims, output_channel=self.decoder_dims) | |
self.decoder = Decoder(encoder_channel=self.decoder_dims, num_fine=self.group_size) | |
# self.build_loss_func() | |
# def build_loss_func(self): | |
# self.loss_func_cdl1 = ChamferDistanceL1().cuda() | |
# self.loss_func_cdl2 = ChamferDistanceL2().cuda() | |
# self.loss_func_emd = emd().cuda() | |
def recon_loss(self, ret, gt): | |
whole_coarse, whole_fine, coarse, fine, group_gt, _ = ret | |
bs, g, _, _ = coarse.shape | |
coarse = coarse.reshape(bs * g, -1, 3).contiguous() | |
fine = fine.reshape(bs * g, -1, 3).contiguous() | |
group_gt = group_gt.reshape(bs * g, -1, 3).contiguous() | |
loss_coarse_block = self.loss_func_cdl1(coarse, group_gt) | |
loss_fine_block = self.loss_func_cdl1(fine, group_gt) | |
loss_recon = loss_coarse_block + loss_fine_block | |
return loss_recon | |
def get_loss(self, ret, gt): | |
# reconstruction loss | |
loss_recon = self.recon_loss(ret, gt) | |
# kl divergence | |
logits = ret[-1] # B G N | |
softmax = F.softmax(logits, dim=-1) | |
mean_softmax = softmax.mean(dim=1) | |
log_qy = torch.log(mean_softmax) | |
log_uniform = torch.log(torch.tensor([1. / self.num_tokens], device=gt.device)) | |
loss_klv = F.kl_div(log_qy, log_uniform.expand(log_qy.size(0), log_qy.size(1)), None, None, 'batchmean', | |
log_target=True) | |
return loss_recon, loss_klv | |
def forward(self, inp, temperature=1., hard=False, **kwargs): | |
neighborhood, center = self.group_divider(inp) | |
logits = self.encoder(neighborhood) # B G C | |
logits = self.dgcnn_1(logits, center) # B G N | |
soft_one_hot = F.gumbel_softmax(logits, tau=temperature, dim=2, hard=hard) # B G N | |
sampled = torch.einsum('b g n, n c -> b g c', soft_one_hot, self.codebook) # B G C | |
feature = self.dgcnn_2(sampled, center) | |
coarse, fine = self.decoder(feature) | |
with torch.no_grad(): | |
whole_fine = (fine + center.unsqueeze(2)).reshape(inp.size(0), -1, 3) | |
whole_coarse = (coarse + center.unsqueeze(2)).reshape(inp.size(0), -1, 3) | |
assert fine.size(2) == self.group_size | |
ret = (whole_coarse, whole_fine, coarse, fine, neighborhood, logits) | |
return ret | |