Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.models.layers import DropPath | |
from lavis.models.ulip_models.pointbert.dvae import Group | |
from lavis.models.ulip_models.pointbert.dvae import Encoder | |
from lavis.models.ulip_models.pointbert.logger import print_log | |
from lavis.models.ulip_models.pointbert.checkpoint import get_missing_parameters_message, get_unexpected_parameters_message | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class TransformerEncoder(nn.Module): | |
""" Transformer Encoder without hierarchical structure | |
""" | |
def __init__(self, embed_dim=768, depth=4, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.): | |
super().__init__() | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, | |
drop_path=drop_path_rate[i] if isinstance(drop_path_rate, list) else drop_path_rate | |
) | |
for i in range(depth)]) | |
def forward(self, x, pos): | |
for _, block in enumerate(self.blocks): | |
x = block(x + pos) | |
return x | |
class PointTransformer(nn.Module): | |
def __init__(self, config, **kwargs): | |
super().__init__() | |
self.config = config | |
# self.args = kwargs["args"] | |
self.num_features = 512 | |
self.trans_dim = config.trans_dim | |
self.depth = config.depth | |
self.drop_path_rate = config.drop_path_rate | |
self.cls_dim = config.cls_dim | |
self.num_heads = config.num_heads | |
self.group_size = config.group_size | |
self.num_group = config.num_group | |
# grouper | |
self.group_divider = Group(num_group=self.num_group, group_size=self.group_size) | |
# define the encoder | |
self.encoder_dims = config.encoder_dims | |
self.encoder = Encoder(encoder_channel=self.encoder_dims) | |
# bridge encoder and transformer | |
self.reduce_dim = nn.Linear(self.encoder_dims, self.trans_dim) | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.trans_dim)) | |
self.cls_pos = nn.Parameter(torch.randn(1, 1, self.trans_dim)) | |
self.pos_embed = nn.Sequential( | |
nn.Linear(3, 128), | |
nn.GELU(), | |
nn.Linear(128, self.trans_dim) | |
) | |
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)] | |
self.blocks = TransformerEncoder( | |
embed_dim=self.trans_dim, | |
depth=self.depth, | |
drop_path_rate=dpr, | |
num_heads=self.num_heads | |
) | |
self.norm = nn.LayerNorm(self.trans_dim) | |
# self.load_model_from_ckpt('/export/home/repos/SLIP/pretrained_models/point_transformer_8192.pt') | |
# if not self.args.evaluate_3d: | |
## TODO: pass as config | |
# self.load_model_from_ckpt('/export/home/ULIP/data/initialize_models/ULIP-2_pointbert_last.pt') | |
# self.cls_head_finetune = nn.Sequential( | |
# nn.Linear(self.trans_dim * 2, 256), | |
# nn.ReLU(inplace=True), | |
# nn.Dropout(0.5), | |
# nn.Linear(256, self.cls_dim) | |
# ) | |
# self.build_loss_func() | |
def build_loss_func(self): | |
self.loss_ce = nn.CrossEntropyLoss() | |
def get_loss_acc(self, pred, gt, smoothing=True): | |
# import pdb; pdb.set_trace() | |
gt = gt.contiguous().view(-1).long() | |
if smoothing: | |
eps = 0.2 | |
n_class = pred.size(1) | |
one_hot = torch.zeros_like(pred).scatter(1, gt.view(-1, 1), 1) | |
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) | |
log_prb = F.log_softmax(pred, dim=1) | |
loss = -(one_hot * log_prb).sum(dim=1).mean() | |
else: | |
loss = self.loss_ce(pred, gt.long()) | |
pred = pred.argmax(-1) | |
acc = (pred == gt).sum() / float(gt.size(0)) | |
return loss, acc * 100 | |
def load_model_from_ckpt(self, bert_ckpt_path): | |
ckpt = torch.load(bert_ckpt_path, map_location='cpu') | |
base_ckpt = {k.replace("module.", ""): v for k, v in ckpt['state_dict'].items()} | |
for k in list(base_ckpt.keys()): | |
if k.startswith('transformer_q') and not k.startswith('transformer_q.cls_head'): | |
base_ckpt[k[len('transformer_q.'):]] = base_ckpt[k] | |
elif k.startswith('base_model'): | |
base_ckpt[k[len('base_model.'):]] = base_ckpt[k] | |
del base_ckpt[k] | |
incompatible = self.load_state_dict(base_ckpt, strict=True) | |
if incompatible.missing_keys: | |
print_log('missing_keys', logger='Transformer') | |
print_log( | |
get_missing_parameters_message(incompatible.missing_keys), | |
logger='Transformer' | |
) | |
if incompatible.unexpected_keys: | |
print_log('unexpected_keys', logger='Transformer') | |
print_log( | |
get_unexpected_parameters_message(incompatible.unexpected_keys), | |
logger='Transformer' | |
) | |
print_log(f'[Transformer] Successful Loading the ckpt from {bert_ckpt_path}', logger='Transformer') | |
def forward(self, pts): | |
# divide the point cloud in the same form. This is important | |
neighborhood, center = self.group_divider(pts) | |
# encoder the input cloud blocks | |
group_input_tokens = self.encoder(neighborhood) # B G N | |
group_input_tokens = self.reduce_dim(group_input_tokens) | |
# prepare cls | |
cls_tokens = self.cls_token.expand(group_input_tokens.size(0), -1, -1) | |
cls_pos = self.cls_pos.expand(group_input_tokens.size(0), -1, -1) | |
# add pos embedding | |
pos = self.pos_embed(center) | |
# final input | |
x = torch.cat((cls_tokens, group_input_tokens), dim=1) | |
pos = torch.cat((cls_pos, pos), dim=1) | |
# transformer | |
x = self.blocks(x, pos) | |
x = self.norm(x) | |
concat_f = torch.cat([x[:, 0], x[:, 1:].max(1)[0]], dim=-1) | |
# ret = self.cls_head_finetune(concat_f) | |
return concat_f |