instructblip / lavis /processors /blip_diffusion_processors.py
WhiteWolf21's picture
Initialization
be13417
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from omegaconf import OmegaConf
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from lavis.common.registry import registry
from lavis.processors.base_processor import BaseProcessor
from lavis.processors.blip_processors import BlipImageBaseProcessor
@registry.register_processor("blip_diffusion_inp_image_train")
@registry.register_processor("blip_diffusion_inp_image_eval")
class BlipDiffusionInputImageProcessor(BlipImageBaseProcessor):
def __init__(
self,
image_size=224,
mean=None,
std=None,
):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 224)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
return cls(image_size=image_size, mean=mean, std=std)
@registry.register_processor("blip_diffusion_tgt_image_train")
class BlipDiffusionTargetImageProcessor(BaseProcessor):
def __init__(
self,
image_size=512,
):
super().__init__()
self.transform = transforms.Compose(
[
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 512)
return cls(image_size=image_size)