File size: 3,482 Bytes
ec0c335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Test the OpenAI compatible server

Launch:
python3 launch_openai_api_test_server.py
"""

import openai

from fastchat.utils import run_cmd

openai.api_key = "EMPTY"  # Not support yet
openai.api_base = "http://localhost:8000/v1"


def test_list_models():
    model_list = openai.Model.list()
    names = [x["id"] for x in model_list["data"]]
    return names


def test_completion(model, logprob):
    prompt = "Once upon a time"
    completion = openai.Completion.create(
        model=model,
        prompt=prompt,
        logprobs=logprob,
        max_tokens=64,
        temperature=0,
    )
    print(f"full text: {prompt + completion.choices[0].text}", flush=True)
    if completion.choices[0].logprobs is not None:
        print(
            f"logprobs: {completion.choices[0].logprobs.token_logprobs[:10]}",
            flush=True,
        )


def test_completion_stream(model):
    prompt = "Once upon a time"
    res = openai.Completion.create(
        model=model,
        prompt=prompt,
        max_tokens=64,
        stream=True,
        temperature=0,
    )
    print(prompt, end="")
    for chunk in res:
        content = chunk["choices"][0]["text"]
        print(content, end="", flush=True)
    print()


def test_embedding(model):
    embedding = openai.Embedding.create(model=model, input="Hello world!")
    print(f"embedding len: {len(embedding['data'][0]['embedding'])}")
    print(f"embedding value[:5]: {embedding['data'][0]['embedding'][:5]}")


def test_chat_completion(model):
    completion = openai.ChatCompletion.create(
        model=model,
        messages=[{"role": "user", "content": "Hello! What is your name?"}],
        temperature=0,
    )
    print(completion.choices[0].message.content)


def test_chat_completion_stream(model):
    messages = [{"role": "user", "content": "Hello! What is your name?"}]
    res = openai.ChatCompletion.create(
        model=model, messages=messages, stream=True, temperature=0
    )
    for chunk in res:
        content = chunk["choices"][0]["delta"].get("content", "")
        print(content, end="", flush=True)
    print()


def test_openai_curl():
    run_cmd("curl http://localhost:8000/v1/models")

    run_cmd(
        """
curl http://localhost:8000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "vicuna-7b-v1.5",
    "messages": [{"role": "user", "content": "Hello! What is your name?"}]
  }'
"""
    )

    run_cmd(
        """
curl http://localhost:8000/v1/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "vicuna-7b-v1.5",
    "prompt": "Once upon a time",
    "max_tokens": 41,
    "temperature": 0.5
  }'
"""
    )

    run_cmd(
        """
curl http://localhost:8000/v1/embeddings \
  -H "Content-Type: application/json" \
  -d '{
    "model": "vicuna-7b-v1.5",
    "input": "Hello world!"
  }'
"""
    )


if __name__ == "__main__":
    models = test_list_models()
    print(f"models: {models}")

    for model in models:
        print(f"===== Test {model} ======")

        if model in ["fastchat-t5-3b-v1.0"]:
            logprob = None
        else:
            logprob = 1

        test_completion(model, logprob)
        test_completion_stream(model)
        test_chat_completion(model)
        test_chat_completion_stream(model)
        try:
            test_embedding(model)
        except openai.error.APIError as e:
            print(f"Embedding error: {e}")

    print("===== Test curl =====")
    test_openai_curl()