MasaTate commited on
Commit
8e26b1a
·
1 Parent(s): 20803d9

changed README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -23
README.md CHANGED
@@ -1,26 +1,26 @@
1
- 2022-AdaIN-pytorch
2
- ============================
3
  This is an unofficial Pytorch implementation of the paper, `Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, ICCV 2017` [arxiv](https://arxiv.org/abs/1703.06868). I referred to the [official implementation](https://github.com/xunhuang1995/AdaIN-style) in Torch. I used pretrained weights of vgg19 and decoder from [naoto0804](https://github.com/naoto0804/pytorch-AdaIN).
4
 
5
- Requirements
6
- ----------------------------
7
  Install requirements by `$ pip install -r requirements.txt`
8
 
9
- * Python 3.7+
10
- * PyTorch 1.10
11
- * Pillow
12
- * TorchVision
13
- * Numpy
14
- * imageio
15
- * tqdm
16
 
17
- Usage
18
- ----------------------------
19
 
20
  ### Training
21
 
22
- The encoder uses pretrained vgg19 network. Download the [vgg19 weight](https://drive.google.com/file/d/1UcSl-Zn3byEmn15NIPXMf9zaGCKc2gfx/view?usp=sharing). The decoder is trained on MSCOCO and wikiart dataset.
23
  Run the script train.py
 
24
  ```
25
  $ python train.py --content_dir $CONTENT_DIR --style_dir STYLE_DIR --cuda
26
 
@@ -66,6 +66,7 @@ optional arguments:
66
  --grid_pth GRID_PTH
67
  Specify a grid image path (default=None) if generate a grid image
68
  that contains all style transferred images
 
69
  ```
70
 
71
  ### Test Image Interpolation Style Transfer
@@ -95,6 +96,7 @@ optional arguments:
95
  transfer multiple times with different built-in weights and generate a
96
  grid image that contains all style transferred images. Provide 4 style
97
  images. Do not specify if input interpolation_weights.
 
98
  ```
99
 
100
  ### Test Video Style Transfer
@@ -114,25 +116,35 @@ optional arguments:
114
  --alpha {Alpha Range}
115
  Alpha [0.0, 1.0] controls style transfer level
116
  --cuda Use CUDA
 
117
  ```
118
 
119
- Examples
120
- ----------------------------
121
  ### Basic Style Transfer
 
122
  ![grid](https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/examples/grid.jpg)
123
 
124
  ### Different levels of style transfer
 
125
  ![grid_alpha](https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/examples/grid_alpha.png)
126
 
127
  ### Interpolation Style Transfer
 
128
  ![grid_inter](https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/examples/grid_interpolation.png)
129
 
 
 
 
 
 
 
130
  ### Video Style Transfer
 
131
  Original Video
132
 
133
  https://user-images.githubusercontent.com/42717345/163805137-d7ba350b-a42e-4b91-ac2b-4916b1715153.mp4
134
 
135
-
136
  Style Image
137
 
138
  <img src="https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/images/art/picasso_self_portrait.jpg" alt="drawing" width="200"/>
@@ -141,10 +153,11 @@ Style Transfer Video
141
 
142
  https://user-images.githubusercontent.com/42717345/163805886-a1199a40-6032-4baf-b2d4-30e6e05b3385.mp4
143
 
 
144
 
145
- References
146
- ----------------------------
147
- * X. Huang and S. Belongie. "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization.", in ICCV, 2017. [arxiv](https://arxiv.org/abs/1703.06868)
148
- * [Original implementation in Torch](https://github.com/xunhuang1995/AdaIN-style)
149
- * [Pretrained weights](https://github.com/naoto0804/pytorch-AdaIN)
150
- * List of all source URLs of images collected from the internet. [Image_sources.txt](https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/Image_sources.txt)
 
1
+ # 2022-AdaIN-pytorch
2
+
3
  This is an unofficial Pytorch implementation of the paper, `Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization, ICCV 2017` [arxiv](https://arxiv.org/abs/1703.06868). I referred to the [official implementation](https://github.com/xunhuang1995/AdaIN-style) in Torch. I used pretrained weights of vgg19 and decoder from [naoto0804](https://github.com/naoto0804/pytorch-AdaIN).
4
 
5
+ ## Requirements
6
+
7
  Install requirements by `$ pip install -r requirements.txt`
8
 
9
+ - Python 3.7+
10
+ - PyTorch 1.10
11
+ - Pillow
12
+ - TorchVision
13
+ - Numpy
14
+ - imageio
15
+ - tqdm
16
 
17
+ ## Usage
 
18
 
19
  ### Training
20
 
21
+ The encoder uses pretrained vgg19 network. Download the [vgg19 weight](https://drive.google.com/file/d/1UcSl-Zn3byEmn15NIPXMf9zaGCKc2gfx/view?usp=sharing). The decoder is trained on MSCOCO and wikiart dataset.
22
  Run the script train.py
23
+
24
  ```
25
  $ python train.py --content_dir $CONTENT_DIR --style_dir STYLE_DIR --cuda
26
 
 
66
  --grid_pth GRID_PTH
67
  Specify a grid image path (default=None) if generate a grid image
68
  that contains all style transferred images
69
+ --color_control Preserve content color
70
  ```
71
 
72
  ### Test Image Interpolation Style Transfer
 
96
  transfer multiple times with different built-in weights and generate a
97
  grid image that contains all style transferred images. Provide 4 style
98
  images. Do not specify if input interpolation_weights.
99
+ --color_control Preserve content color
100
  ```
101
 
102
  ### Test Video Style Transfer
 
116
  --alpha {Alpha Range}
117
  Alpha [0.0, 1.0] controls style transfer level
118
  --cuda Use CUDA
119
+ --color_control Preserve content color
120
  ```
121
 
122
+ ## Examples
123
+
124
  ### Basic Style Transfer
125
+
126
  ![grid](https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/examples/grid.jpg)
127
 
128
  ### Different levels of style transfer
129
+
130
  ![grid_alpha](https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/examples/grid_alpha.png)
131
 
132
  ### Interpolation Style Transfer
133
+
134
  ![grid_inter](https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/examples/grid_interpolation.png)
135
 
136
+ ### Style Transfer with color control
137
+
138
+ |![brad_pitt_style_flower_of_life_alpha1 0](https://user-images.githubusercontent.com/45582330/165221498-21c09999-1228-4bad-bf9f-f50aece289d7.jpg)|![brad_pitt_style_flower_of_life_alpha1 0_colorcontrol](https://user-images.githubusercontent.com/45582330/165221515-9a81a97c-19d0-4de6-ad10-e654d941de5d.jpg)|
139
+ |---|---|
140
+ |w/o color control|w/ color control|
141
+
142
  ### Video Style Transfer
143
+
144
  Original Video
145
 
146
  https://user-images.githubusercontent.com/42717345/163805137-d7ba350b-a42e-4b91-ac2b-4916b1715153.mp4
147
 
 
148
  Style Image
149
 
150
  <img src="https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/images/art/picasso_self_portrait.jpg" alt="drawing" width="200"/>
 
153
 
154
  https://user-images.githubusercontent.com/42717345/163805886-a1199a40-6032-4baf-b2d4-30e6e05b3385.mp4
155
 
156
+ ## References
157
 
158
+ - X. Huang and S. Belongie. "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization.", in ICCV, 2017. [arxiv](https://arxiv.org/abs/1703.06868)
159
+ - [Original implementation in Torch](https://github.com/xunhuang1995/AdaIN-style)
160
+ - [Pretrained weights](https://github.com/naoto0804/pytorch-AdaIN)
161
+ - List of all source URLs of images collected from the internet. [Image_sources.txt](https://github.com/media-comp/2022-AdaIN-pytorch/blob/main/Image_sources.txt)
162
+ - L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and E. Shechtman. Controlling perceptual factors in neural style transfer. In CVPR, 2017. [arxiv](https://arxiv.org/abs/1611.07865)
163
+ - A. Hertzmann. Algorithms for Rendering in Artistic Styles. PhD thesis, New York University, 2001.