inserted memo
Browse files
test.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import os
|
2 |
import argparse
|
3 |
-
from turtle import end_fill
|
4 |
import torch
|
5 |
import time
|
6 |
import numpy as np
|
@@ -67,12 +66,13 @@ def linear_histogram_matching(content_tensor, style_tensor):
|
|
67 |
Return:
|
68 |
style_tensor (torch.FloatTensor): histogram matched Style Image
|
69 |
"""
|
70 |
-
|
71 |
for b in range(len(content_tensor)):
|
72 |
std_ct = []
|
73 |
std_st = []
|
74 |
mean_ct = []
|
75 |
mean_st = []
|
|
|
76 |
for c in range(len(content_tensor[b])):
|
77 |
std_ct.append(torch.var(content_tensor[b][c],unbiased = False))
|
78 |
mean_ct.append(torch.mean(content_tensor[b][c]))
|
|
|
1 |
import os
|
2 |
import argparse
|
|
|
3 |
import torch
|
4 |
import time
|
5 |
import numpy as np
|
|
|
66 |
Return:
|
67 |
style_tensor (torch.FloatTensor): histogram matched Style Image
|
68 |
"""
|
69 |
+
#for batch
|
70 |
for b in range(len(content_tensor)):
|
71 |
std_ct = []
|
72 |
std_st = []
|
73 |
mean_ct = []
|
74 |
mean_st = []
|
75 |
+
#for channel
|
76 |
for c in range(len(content_tensor[b])):
|
77 |
std_ct.append(torch.var(content_tensor[b][c],unbiased = False))
|
78 |
mean_ct.append(torch.mean(content_tensor[b][c]))
|