LGD-Ti-fighting
Feng Wang
commited on
Commit
·
13be1ce
1
Parent(s):
49fa100
remove yolov5 codes with new hsv aug and new random affine transform (#781)
Browse filesremove yolov5 codes to make license legal
Co-authored-by: Feng Wang <[email protected]>
- yolox/data/data_augment.py +92 -98
- yolox/data/datasets/mosaicdetection.py +14 -19
yolox/data/data_augment.py
CHANGED
@@ -18,124 +18,118 @@ import numpy as np
|
|
18 |
from yolox.utils import xyxy2cxcywh
|
19 |
|
20 |
|
21 |
-
def augment_hsv(img, hgain=
|
22 |
-
|
23 |
-
|
|
|
24 |
dtype = img.dtype # uint8
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
img_hsv = cv2.merge(
|
32 |
-
(cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))
|
33 |
-
).astype(dtype)
|
34 |
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
35 |
|
36 |
|
37 |
-
def
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
) # candidates
|
50 |
|
51 |
|
52 |
-
def
|
53 |
-
|
54 |
-
targets=(),
|
55 |
degrees=10,
|
56 |
translate=0.1,
|
57 |
-
|
58 |
shear=10,
|
59 |
-
perspective=0.0,
|
60 |
-
border=(0, 0),
|
61 |
):
|
62 |
-
|
63 |
-
height = img.shape[0] + border[0] * 2 # shape(h,w,c)
|
64 |
-
width = img.shape[1] + border[1] * 2
|
65 |
-
|
66 |
-
# Center
|
67 |
-
C = np.eye(3)
|
68 |
-
C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
|
69 |
-
C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
|
70 |
|
71 |
# Rotation and Scale
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
78 |
|
|
|
79 |
# Shear
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
83 |
|
84 |
# Translation
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
# Transform label coordinates
|
113 |
-
|
114 |
-
|
115 |
-
# warp points
|
116 |
-
xy = np.ones((n * 4, 3))
|
117 |
-
xy[:, :2] = targets[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
|
118 |
-
n * 4, 2
|
119 |
-
) # x1y1, x2y2, x1y2, x2y1
|
120 |
-
xy = xy @ M.T # transform
|
121 |
-
if perspective:
|
122 |
-
xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
|
123 |
-
else: # affine
|
124 |
-
xy = xy[:, :2].reshape(n, 8)
|
125 |
-
|
126 |
-
# create new boxes
|
127 |
-
x = xy[:, [0, 2, 4, 6]]
|
128 |
-
y = xy[:, [1, 3, 5, 7]]
|
129 |
-
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
130 |
-
|
131 |
-
# clip boxes
|
132 |
-
xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
|
133 |
-
xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
|
134 |
-
|
135 |
-
# filter candidates
|
136 |
-
i = box_candidates(box1=targets[:, :4].T * s, box2=xy.T)
|
137 |
-
targets = targets[i]
|
138 |
-
targets[:, :4] = xy[i]
|
139 |
|
140 |
return img, targets
|
141 |
|
|
|
18 |
from yolox.utils import xyxy2cxcywh
|
19 |
|
20 |
|
21 |
+
def augment_hsv(img, hgain=5, sgain=30, vgain=30):
|
22 |
+
hsv_augs = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] # random gains
|
23 |
+
hsv_augs *= np.random.randint(0, 2, 3) # random selection of h, s, v
|
24 |
+
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
25 |
dtype = img.dtype # uint8
|
26 |
|
27 |
+
hsv_augs = hsv_augs.astype(dtype)
|
28 |
+
img_hsv[..., 0] = (img_hsv[..., 0] + hsv_augs[0]) % 180
|
29 |
+
img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_augs[1], 0, 255)
|
30 |
+
img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_augs[2], 0, 255)
|
31 |
|
|
|
|
|
|
|
32 |
cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
|
33 |
|
34 |
|
35 |
+
def get_aug_params(value, center=0):
|
36 |
+
if isinstance(value, float):
|
37 |
+
return random.uniform(center - value, center + value)
|
38 |
+
elif len(value) == 2:
|
39 |
+
return random.uniform(value[0], value[1])
|
40 |
+
else:
|
41 |
+
raise ValueError(
|
42 |
+
"Affine params should be either a sequence containing two values\
|
43 |
+
or single float values. Got {}".format(
|
44 |
+
value
|
45 |
+
)
|
46 |
+
)
|
|
|
47 |
|
48 |
|
49 |
+
def get_affine_matrix(
|
50 |
+
target_size,
|
|
|
51 |
degrees=10,
|
52 |
translate=0.1,
|
53 |
+
scales=0.1,
|
54 |
shear=10,
|
|
|
|
|
55 |
):
|
56 |
+
twidth, theight = target_size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Rotation and Scale
|
59 |
+
angle = get_aug_params(degrees)
|
60 |
+
scale = get_aug_params(scales, center=1.0)
|
61 |
+
|
62 |
+
if scale <= 0.0:
|
63 |
+
raise ValueError("Argument scale should be positive")
|
64 |
+
|
65 |
+
R = cv2.getRotationMatrix2D(angle=angle, center=(0, 0), scale=scale)
|
66 |
|
67 |
+
M = np.ones([2, 3])
|
68 |
# Shear
|
69 |
+
shear_x = math.tan(get_aug_params(shear) * math.pi / 180)
|
70 |
+
shear_y = math.tan(get_aug_params(shear) * math.pi / 180)
|
71 |
+
|
72 |
+
M[0] = R[0] + shear_y * R[1]
|
73 |
+
M[1] = R[1] + shear_x * R[0]
|
74 |
|
75 |
# Translation
|
76 |
+
translation_x = get_aug_params(translate) * twidth # x translation (pixels)
|
77 |
+
translation_y = get_aug_params(translate) * theight # y translation (pixels)
|
78 |
+
|
79 |
+
M[0, 2] = translation_x
|
80 |
+
M[1, 2] = translation_y
|
81 |
+
|
82 |
+
return M, scale
|
83 |
+
|
84 |
+
|
85 |
+
def apply_affine_to_bboxes(targets, target_size, M, scale):
|
86 |
+
num_gts = len(targets)
|
87 |
+
|
88 |
+
# warp corner points
|
89 |
+
twidth, theight = target_size
|
90 |
+
corner_points = np.ones((4 * num_gts, 3))
|
91 |
+
corner_points[:, :2] = targets[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(
|
92 |
+
4 * num_gts, 2
|
93 |
+
) # x1y1, x2y2, x1y2, x2y1
|
94 |
+
corner_points = corner_points @ M.T # apply affine transform
|
95 |
+
corner_points = corner_points.reshape(num_gts, 8)
|
96 |
+
|
97 |
+
# create new boxes
|
98 |
+
corner_xs = corner_points[:, 0::2]
|
99 |
+
corner_ys = corner_points[:, 1::2]
|
100 |
+
new_bboxes = (
|
101 |
+
np.concatenate(
|
102 |
+
(corner_xs.min(1), corner_ys.min(1), corner_xs.max(1), corner_ys.max(1))
|
103 |
+
)
|
104 |
+
.reshape(4, num_gts)
|
105 |
+
.T
|
106 |
+
)
|
107 |
+
|
108 |
+
# clip boxes
|
109 |
+
new_bboxes[:, 0::2] = new_bboxes[:, 0::2].clip(0, twidth)
|
110 |
+
new_bboxes[:, 1::2] = new_bboxes[:, 1::2].clip(0, theight)
|
111 |
+
|
112 |
+
targets[:, :4] = new_bboxes
|
113 |
+
|
114 |
+
return targets
|
115 |
+
|
116 |
+
|
117 |
+
def random_affine(
|
118 |
+
img,
|
119 |
+
targets=(),
|
120 |
+
target_size=(640, 640),
|
121 |
+
degrees=10,
|
122 |
+
translate=0.1,
|
123 |
+
scales=0.1,
|
124 |
+
shear=10,
|
125 |
+
):
|
126 |
+
M, scale = get_affine_matrix(target_size, degrees, translate, scales, shear)
|
127 |
+
|
128 |
+
img = cv2.warpAffine(img, M, dsize=target_size, borderValue=(114, 114, 114))
|
129 |
|
130 |
# Transform label coordinates
|
131 |
+
if len(targets) > 0:
|
132 |
+
targets = apply_affine_to_bboxes(targets, target_size, M, scale)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
return img, targets
|
135 |
|
yolox/data/datasets/mosaicdetection.py
CHANGED
@@ -9,7 +9,7 @@ import numpy as np
|
|
9 |
|
10 |
from yolox.utils import adjust_box_anns, get_local_rank
|
11 |
|
12 |
-
from ..data_augment import
|
13 |
from .datasets_wrapper import Dataset
|
14 |
|
15 |
|
@@ -40,8 +40,8 @@ class MosaicDetection(Dataset):
|
|
40 |
def __init__(
|
41 |
self, dataset, img_size, mosaic=True, preproc=None,
|
42 |
degrees=10.0, translate=0.1, mosaic_scale=(0.5, 1.5),
|
43 |
-
mixup_scale=(0.5, 1.5), shear=2.0,
|
44 |
-
|
45 |
):
|
46 |
"""
|
47 |
|
@@ -55,7 +55,6 @@ class MosaicDetection(Dataset):
|
|
55 |
mosaic_scale (tuple):
|
56 |
mixup_scale (tuple):
|
57 |
shear (float):
|
58 |
-
perspective (float):
|
59 |
enable_mixup (bool):
|
60 |
*args(tuple) : Additional arguments for mixup random sampler.
|
61 |
"""
|
@@ -66,7 +65,6 @@ class MosaicDetection(Dataset):
|
|
66 |
self.translate = translate
|
67 |
self.scale = mosaic_scale
|
68 |
self.shear = shear
|
69 |
-
self.perspective = perspective
|
70 |
self.mixup_scale = mixup_scale
|
71 |
self.enable_mosaic = mosaic
|
72 |
self.enable_mixup = enable_mixup
|
@@ -127,16 +125,15 @@ class MosaicDetection(Dataset):
|
|
127 |
np.clip(mosaic_labels[:, 2], 0, 2 * input_w, out=mosaic_labels[:, 2])
|
128 |
np.clip(mosaic_labels[:, 3], 0, 2 * input_h, out=mosaic_labels[:, 3])
|
129 |
|
130 |
-
mosaic_img, mosaic_labels =
|
131 |
mosaic_img,
|
132 |
mosaic_labels,
|
|
|
133 |
degrees=self.degrees,
|
134 |
translate=self.translate,
|
135 |
-
|
136 |
shear=self.shear,
|
137 |
-
|
138 |
-
border=[-input_h // 2, -input_w // 2],
|
139 |
-
) # border to remove
|
140 |
|
141 |
# -----------------------------------------------------------------
|
142 |
# CopyPaste: https://arxiv.org/abs/2012.07177
|
@@ -226,14 +223,12 @@ class MosaicDetection(Dataset):
|
|
226 |
cp_bboxes_transformed_np[:, 1::2] = np.clip(
|
227 |
cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h
|
228 |
)
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
origin_img = origin_img.astype(np.float32)
|
237 |
-
origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32)
|
238 |
|
239 |
return origin_img.astype(np.uint8), origin_labels
|
|
|
9 |
|
10 |
from yolox.utils import adjust_box_anns, get_local_rank
|
11 |
|
12 |
+
from ..data_augment import random_affine
|
13 |
from .datasets_wrapper import Dataset
|
14 |
|
15 |
|
|
|
40 |
def __init__(
|
41 |
self, dataset, img_size, mosaic=True, preproc=None,
|
42 |
degrees=10.0, translate=0.1, mosaic_scale=(0.5, 1.5),
|
43 |
+
mixup_scale=(0.5, 1.5), shear=2.0, enable_mixup=True,
|
44 |
+
mosaic_prob=1.0, mixup_prob=1.0, *args
|
45 |
):
|
46 |
"""
|
47 |
|
|
|
55 |
mosaic_scale (tuple):
|
56 |
mixup_scale (tuple):
|
57 |
shear (float):
|
|
|
58 |
enable_mixup (bool):
|
59 |
*args(tuple) : Additional arguments for mixup random sampler.
|
60 |
"""
|
|
|
65 |
self.translate = translate
|
66 |
self.scale = mosaic_scale
|
67 |
self.shear = shear
|
|
|
68 |
self.mixup_scale = mixup_scale
|
69 |
self.enable_mosaic = mosaic
|
70 |
self.enable_mixup = enable_mixup
|
|
|
125 |
np.clip(mosaic_labels[:, 2], 0, 2 * input_w, out=mosaic_labels[:, 2])
|
126 |
np.clip(mosaic_labels[:, 3], 0, 2 * input_h, out=mosaic_labels[:, 3])
|
127 |
|
128 |
+
mosaic_img, mosaic_labels = random_affine(
|
129 |
mosaic_img,
|
130 |
mosaic_labels,
|
131 |
+
target_size=(input_w, input_h),
|
132 |
degrees=self.degrees,
|
133 |
translate=self.translate,
|
134 |
+
scales=self.scale,
|
135 |
shear=self.shear,
|
136 |
+
)
|
|
|
|
|
137 |
|
138 |
# -----------------------------------------------------------------
|
139 |
# CopyPaste: https://arxiv.org/abs/2012.07177
|
|
|
223 |
cp_bboxes_transformed_np[:, 1::2] = np.clip(
|
224 |
cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h
|
225 |
)
|
226 |
+
|
227 |
+
cls_labels = cp_labels[:, 4:5].copy()
|
228 |
+
box_labels = cp_bboxes_transformed_np
|
229 |
+
labels = np.hstack((box_labels, cls_labels))
|
230 |
+
origin_labels = np.vstack((origin_labels, labels))
|
231 |
+
origin_img = origin_img.astype(np.float32)
|
232 |
+
origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32)
|
|
|
|
|
233 |
|
234 |
return origin_img.astype(np.uint8), origin_labels
|