Feng Wang
commited on
Commit
·
27cdfe4
1
Parent(s):
f609557
feat(model): support hub load
Browse files- hubconf.py +19 -0
- yolox/models/__init__.py +1 -0
- yolox/models/build.py +91 -0
hubconf.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
Usage example:
|
6 |
+
import torch
|
7 |
+
model = torch.hub.load("Megvii-BaseDetection/YOLOX", "yolox_s")
|
8 |
+
"""
|
9 |
+
dependencies = ["torch"]
|
10 |
+
|
11 |
+
from yolox.models import ( # noqa: F401, E402
|
12 |
+
yolox_tiny,
|
13 |
+
yolox_nano,
|
14 |
+
yolox_s,
|
15 |
+
yolox_m,
|
16 |
+
yolox_l,
|
17 |
+
yolox_x,
|
18 |
+
yolov3,
|
19 |
+
)
|
yolox/models/__init__.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
# -*- coding:utf-8 -*-
|
3 |
# Copyright (c) Megvii Inc. All rights reserved.
|
4 |
|
|
|
5 |
from .darknet import CSPDarknet, Darknet
|
6 |
from .losses import IOUloss
|
7 |
from .yolo_fpn import YOLOFPN
|
|
|
2 |
# -*- coding:utf-8 -*-
|
3 |
# Copyright (c) Megvii Inc. All rights reserved.
|
4 |
|
5 |
+
from .build import *
|
6 |
from .darknet import CSPDarknet, Darknet
|
7 |
from .losses import IOUloss
|
8 |
from .yolo_fpn import YOLOFPN
|
yolox/models/build.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.hub import load_state_dict_from_url
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"create_yolox_model",
|
10 |
+
"yolox_nano",
|
11 |
+
"yolox_tiny",
|
12 |
+
"yolox_s",
|
13 |
+
"yolox_m",
|
14 |
+
"yolox_l",
|
15 |
+
"yolox_x",
|
16 |
+
"yolov3",
|
17 |
+
]
|
18 |
+
|
19 |
+
_CKPT_ROOT_URL = "https://github.com/Megvii-BaseDetection/YOLOX/releases/download"
|
20 |
+
_CKPT_FULL_PATH = {
|
21 |
+
"yolox-nano": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_nano.pth",
|
22 |
+
"yolox-tiny": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_tiny.pth",
|
23 |
+
"yolox-s": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_s.pth",
|
24 |
+
"yolox-m": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_m.pth",
|
25 |
+
"yolox-l": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_l.pth",
|
26 |
+
"yolox-x": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_x.pth",
|
27 |
+
"yolov3": f"{_CKPT_ROOT_URL}/0.1.1rc0/yolox_darknet.pth",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
def create_yolox_model(
|
32 |
+
name: str, pretrained: bool = True, num_classes: int = 80, device=None
|
33 |
+
) -> nn.Module:
|
34 |
+
"""creates and loads a YOLOX model
|
35 |
+
|
36 |
+
Args:
|
37 |
+
name (str): name of model. for example, "yolox-s", "yolox-tiny".
|
38 |
+
pretrained (bool): load pretrained weights into the model. Default to True.
|
39 |
+
num_classes (int): number of model classes. Defalut to 80.
|
40 |
+
device (str): default device to for model. Defalut to None.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
YOLOX model (nn.Module)
|
44 |
+
"""
|
45 |
+
from yolox.exp import get_exp, Exp
|
46 |
+
|
47 |
+
if device is None:
|
48 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
49 |
+
device = torch.device(device)
|
50 |
+
|
51 |
+
assert name in _CKPT_FULL_PATH, f"user should use one of value in {_CKPT_FULL_PATH.keys()}"
|
52 |
+
exp: Exp = get_exp(exp_name=name)
|
53 |
+
exp.num_classes = num_classes
|
54 |
+
yolox_model = exp.get_model()
|
55 |
+
if pretrained and num_classes == 80:
|
56 |
+
weights_url = _CKPT_FULL_PATH[name]
|
57 |
+
ckpt = load_state_dict_from_url(weights_url, map_location="cpu")
|
58 |
+
if "model" in ckpt:
|
59 |
+
ckpt = ckpt["model"]
|
60 |
+
yolox_model.load_state_dict(ckpt)
|
61 |
+
|
62 |
+
yolox_model.to(device)
|
63 |
+
return yolox_model
|
64 |
+
|
65 |
+
|
66 |
+
def yolox_nano(pretrained=True, num_classes=80, device=None):
|
67 |
+
return create_yolox_model("yolox-nano", pretrained, num_classes, device)
|
68 |
+
|
69 |
+
|
70 |
+
def yolox_tiny(pretrained=True, num_classes=80, device=None):
|
71 |
+
return create_yolox_model("yolox-tiny", pretrained, num_classes, device)
|
72 |
+
|
73 |
+
|
74 |
+
def yolox_s(pretrained=True, num_classes=80, device=None):
|
75 |
+
return create_yolox_model("yolox-s", pretrained, num_classes, device)
|
76 |
+
|
77 |
+
|
78 |
+
def yolox_m(pretrained=True, num_classes=80, device=None):
|
79 |
+
return create_yolox_model("yolox-m", pretrained, num_classes, device)
|
80 |
+
|
81 |
+
|
82 |
+
def yolox_l(pretrained=True, num_classes=80, device=None):
|
83 |
+
return create_yolox_model("yolox-l", pretrained, num_classes, device)
|
84 |
+
|
85 |
+
|
86 |
+
def yolox_x(pretrained=True, num_classes=80, device=None):
|
87 |
+
return create_yolox_model("yolox-x", pretrained, num_classes, device)
|
88 |
+
|
89 |
+
|
90 |
+
def yolov3(pretrained=True, num_classes=80, device=None):
|
91 |
+
return create_yolox_model("yolox-tiny", pretrained, num_classes, device)
|