Create demo_api.py
Browse files- tools/demo_api.py +180 -0
tools/demo_api.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# -*- coding:utf-8 -*-
|
3 |
+
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from loguru import logger
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from yolox.data.datasets import COCO_CLASSES
|
13 |
+
from yolox.exp import get_exp
|
14 |
+
from yolox.utils import fuse_model, get_model_info, postprocess, vis
|
15 |
+
|
16 |
+
IMAGE_EXT = [".jpg", ".jpeg", ".webp", ".bmp", ".png"]
|
17 |
+
|
18 |
+
def get_image_list(path):
|
19 |
+
image_names = []
|
20 |
+
for maindir, subdir, file_name_list in os.walk(path):
|
21 |
+
for filename in file_name_list:
|
22 |
+
apath = os.path.join(maindir, filename)
|
23 |
+
ext = os.path.splitext(apath)[1]
|
24 |
+
if ext in IMAGE_EXT:
|
25 |
+
image_names.append(apath)
|
26 |
+
return image_names
|
27 |
+
|
28 |
+
|
29 |
+
class Predictor(object):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
model,
|
33 |
+
exp,
|
34 |
+
cls_names=COCO_CLASSES,
|
35 |
+
trt_file=None,
|
36 |
+
decoder=None,
|
37 |
+
device="cpu",
|
38 |
+
fp16=False,
|
39 |
+
legacy=False,
|
40 |
+
):
|
41 |
+
self.model = model
|
42 |
+
self.cls_names = cls_names
|
43 |
+
self.decoder = decoder
|
44 |
+
self.num_classes = exp.num_classes
|
45 |
+
self.confthre = exp.test_conf
|
46 |
+
self.nmsthre = exp.nmsthre
|
47 |
+
self.test_size = exp.test_size
|
48 |
+
self.device = device
|
49 |
+
self.fp16 = fp16
|
50 |
+
self.preproc = ValTransform(legacy=legacy)
|
51 |
+
if trt_file is not None:
|
52 |
+
from torch2trt import TRTModule
|
53 |
+
|
54 |
+
model_trt = TRTModule()
|
55 |
+
model_trt.load_state_dict(torch.load(trt_file))
|
56 |
+
|
57 |
+
x = torch.ones(1, 3, exp.test_size[0], exp.test_size[1]).cuda()
|
58 |
+
self.model(x)
|
59 |
+
self.model = model_trt
|
60 |
+
|
61 |
+
def inference(self, img):
|
62 |
+
img_info = {"id": 0}
|
63 |
+
if isinstance(img, str):
|
64 |
+
img_info["file_name"] = os.path.basename(img)
|
65 |
+
img = cv2.imread(img)
|
66 |
+
else:
|
67 |
+
img_info["file_name"] = None
|
68 |
+
|
69 |
+
height, width = img.shape[:2]
|
70 |
+
img_info["height"] = height
|
71 |
+
img_info["width"] = width
|
72 |
+
img_info["raw_img"] = img
|
73 |
+
|
74 |
+
ratio = min(self.test_size[0] / img.shape[0], self.test_size[1] / img.shape[1])
|
75 |
+
img_info["ratio"] = ratio
|
76 |
+
|
77 |
+
img, _ = self.preproc(img, None, self.test_size)
|
78 |
+
img = torch.from_numpy(img).unsqueeze(0)
|
79 |
+
img = img.float()
|
80 |
+
if self.device == "gpu":
|
81 |
+
img = img.cuda()
|
82 |
+
if self.fp16:
|
83 |
+
img = img.half() # to FP16
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
t0 = time.time()
|
87 |
+
outputs = self.model(img)
|
88 |
+
if self.decoder is not None:
|
89 |
+
outputs = self.decoder(outputs, dtype=outputs.type())
|
90 |
+
outputs = postprocess(
|
91 |
+
outputs, self.num_classes, self.confthre,
|
92 |
+
self.nmsthre, class_agnostic=True
|
93 |
+
)
|
94 |
+
logger.info("Infer time: {:.4f}s".format(time.time() - t0))
|
95 |
+
return outputs, img_info
|
96 |
+
|
97 |
+
def visual(self, output, img_info, cls_conf=0.35):
|
98 |
+
ratio = img_info["ratio"]
|
99 |
+
img = img_info["raw_img"]
|
100 |
+
if output is None:
|
101 |
+
return img
|
102 |
+
output = output.cpu()
|
103 |
+
|
104 |
+
bboxes = output[:, 0:4]
|
105 |
+
|
106 |
+
# preprocessing: resize
|
107 |
+
bboxes /= ratio
|
108 |
+
|
109 |
+
cls = output[:, 6]
|
110 |
+
scores = output[:, 4] * output[:, 5]
|
111 |
+
|
112 |
+
vis_res = vis(img, bboxes, scores, cls, cls_conf, self.cls_names)
|
113 |
+
return vis_res
|
114 |
+
|
115 |
+
def build_predictor(
|
116 |
+
exp_file, model_name, ckpt_path, device="cpu", fp16=False, fuse=False, trt=False, conf=0.3, nms=0.3, tsize=None
|
117 |
+
):
|
118 |
+
# load experiment
|
119 |
+
exp = get_exp(exp_file, model_name)
|
120 |
+
if conf is not None:
|
121 |
+
exp.test_conf = conf
|
122 |
+
if nms is not None:
|
123 |
+
exp.nmsthre = nms
|
124 |
+
if tsize is not None:
|
125 |
+
exp.test_size = (tsize, tsize)
|
126 |
+
|
127 |
+
# create & initialize model
|
128 |
+
model = exp.get_model()
|
129 |
+
if device == "gpu":
|
130 |
+
model.cuda()
|
131 |
+
if fp16:
|
132 |
+
model.half()
|
133 |
+
model.eval()
|
134 |
+
logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size)))
|
135 |
+
|
136 |
+
predictor = Predictor(
|
137 |
+
model, exp, COCO_CLASSES,
|
138 |
+
None, decoder=None,
|
139 |
+
device=device, fp16=fp16, legacy=False
|
140 |
+
)
|
141 |
+
|
142 |
+
return predictor
|
143 |
+
|
144 |
+
def run_detection(predictor, path):
|
145 |
+
# COCO output format: { images: [{id: 0, filename: "x.jpg"}, ...],
|
146 |
+
# annotations: [{id: 0, image_id: 0, bbox: [0 0 0 0], score: 0.35, class: 1}, ... ] }
|
147 |
+
if os.path.isdir(path):
|
148 |
+
files = get_image_list(path)
|
149 |
+
else:
|
150 |
+
files = [path]
|
151 |
+
files.sort()
|
152 |
+
|
153 |
+
img_list = []
|
154 |
+
ann_list = []
|
155 |
+
|
156 |
+
for img_id, image_name in enumerate(files):
|
157 |
+
|
158 |
+
outputs, img_info = predictor.inference(image_name)
|
159 |
+
ratio = img_info["ratio"]
|
160 |
+
|
161 |
+
img_entry = {"id": img_id,
|
162 |
+
"filename": image_name }
|
163 |
+
img_list.append(img_entry)
|
164 |
+
|
165 |
+
for id, output in enumerate(outputs):
|
166 |
+
ann_entry = {"id": id,
|
167 |
+
"image_id": img_id,
|
168 |
+
"bbox": output[:4] / ratio,
|
169 |
+
"cls": output[6],
|
170 |
+
"score": output[4] * output[5] }
|
171 |
+
ann_list.append(ann_entry)
|
172 |
+
|
173 |
+
data_dict = { "images": img_list,
|
174 |
+
"annotations": ann_list
|
175 |
+
}
|
176 |
+
|
177 |
+
with open(f"{path}/results.json", w) as f:
|
178 |
+
json.dump(data_dict, f)
|
179 |
+
|
180 |
+
return f"{path}/results.json"
|