ZhengGe
commited on
Commit
·
b6391d4
1
Parent(s):
25862a3
fix wrong path
Browse files- README.md +4 -4
- demo/TensorRT/python/README.md +4 -4
README.md
CHANGED
@@ -109,10 +109,10 @@ python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o
|
|
109 |
When using -f, the above commands are equivalent to:
|
110 |
|
111 |
```shell
|
112 |
-
python tools/train.py -f exps/
|
113 |
-
exps/
|
114 |
-
exps/
|
115 |
-
exps/
|
116 |
```
|
117 |
|
118 |
</details>
|
|
|
109 |
When using -f, the above commands are equivalent to:
|
110 |
|
111 |
```shell
|
112 |
+
python tools/train.py -f exps/default/yolox-s.py -d 8 -b 64 --fp16 -o
|
113 |
+
exps/default/yolox-m.py
|
114 |
+
exps/default/yolox-l.py
|
115 |
+
exps/default/yolox-x.py
|
116 |
```
|
117 |
|
118 |
</details>
|
demo/TensorRT/python/README.md
CHANGED
@@ -9,7 +9,7 @@ Please follow the [TensorRT Installation Guide](https://docs.nvidia.com/deeplear
|
|
9 |
## Convert model
|
10 |
|
11 |
YOLOX models can be easily conveted to TensorRT models using torch2trt
|
12 |
-
|
13 |
If you want to convert our model, use the flag -n to specify a model name:
|
14 |
```shell
|
15 |
python tools/trt.py -n <YOLOX_MODEL_NAME> -c <YOLOX_CHECKPOINT>
|
@@ -19,7 +19,7 @@ YOLOX models can be easily conveted to TensorRT models using torch2trt
|
|
19 |
python tools/trt.py -n yolox-s -c your_ckpt.pth.tar
|
20 |
```
|
21 |
<YOLOX_MODEL_NAME> can be: yolox-nano, yolox-tiny. yolox-s, yolox-m, yolox-l, yolox-x.
|
22 |
-
|
23 |
If you want to convert your customized model, use the flag -f to specify you exp file:
|
24 |
```shell
|
25 |
python tools/trt.py -f <YOLOX_EXP_FILE> -c <YOLOX_CHECKPOINT>
|
@@ -29,7 +29,7 @@ YOLOX models can be easily conveted to TensorRT models using torch2trt
|
|
29 |
python tools/trt.py -f /path/to/your/yolox/exps/yolox_s.py -c your_ckpt.pth.tar
|
30 |
```
|
31 |
*yolox_s.py* can be any exp file modified by you.
|
32 |
-
|
33 |
The converted model and the serialized engine file (for C++ demo) will be saved on your experiment output dir.
|
34 |
|
35 |
## Demo
|
@@ -41,6 +41,6 @@ python tools/demo.py image -n yolox-s --trt --save_result
|
|
41 |
```
|
42 |
or
|
43 |
```shell
|
44 |
-
python tools/demo.py image -f exps/
|
45 |
```
|
46 |
|
|
|
9 |
## Convert model
|
10 |
|
11 |
YOLOX models can be easily conveted to TensorRT models using torch2trt
|
12 |
+
|
13 |
If you want to convert our model, use the flag -n to specify a model name:
|
14 |
```shell
|
15 |
python tools/trt.py -n <YOLOX_MODEL_NAME> -c <YOLOX_CHECKPOINT>
|
|
|
19 |
python tools/trt.py -n yolox-s -c your_ckpt.pth.tar
|
20 |
```
|
21 |
<YOLOX_MODEL_NAME> can be: yolox-nano, yolox-tiny. yolox-s, yolox-m, yolox-l, yolox-x.
|
22 |
+
|
23 |
If you want to convert your customized model, use the flag -f to specify you exp file:
|
24 |
```shell
|
25 |
python tools/trt.py -f <YOLOX_EXP_FILE> -c <YOLOX_CHECKPOINT>
|
|
|
29 |
python tools/trt.py -f /path/to/your/yolox/exps/yolox_s.py -c your_ckpt.pth.tar
|
30 |
```
|
31 |
*yolox_s.py* can be any exp file modified by you.
|
32 |
+
|
33 |
The converted model and the serialized engine file (for C++ demo) will be saved on your experiment output dir.
|
34 |
|
35 |
## Demo
|
|
|
41 |
```
|
42 |
or
|
43 |
```shell
|
44 |
+
python tools/demo.py image -f exps/default/yolox_s.py --trt --save_result
|
45 |
```
|
46 |
|