ZhengGe commited on
Commit
b6391d4
·
1 Parent(s): 25862a3

fix wrong path

Browse files
Files changed (2) hide show
  1. README.md +4 -4
  2. demo/TensorRT/python/README.md +4 -4
README.md CHANGED
@@ -109,10 +109,10 @@ python tools/train.py -n yolox-s -d 8 -b 64 --fp16 -o
109
  When using -f, the above commands are equivalent to:
110
 
111
  ```shell
112
- python tools/train.py -f exps/base/yolox-s.py -d 8 -b 64 --fp16 -o
113
- exps/base/yolox-m.py
114
- exps/base/yolox-l.py
115
- exps/base/yolox-x.py
116
  ```
117
 
118
  </details>
 
109
  When using -f, the above commands are equivalent to:
110
 
111
  ```shell
112
+ python tools/train.py -f exps/default/yolox-s.py -d 8 -b 64 --fp16 -o
113
+ exps/default/yolox-m.py
114
+ exps/default/yolox-l.py
115
+ exps/default/yolox-x.py
116
  ```
117
 
118
  </details>
demo/TensorRT/python/README.md CHANGED
@@ -9,7 +9,7 @@ Please follow the [TensorRT Installation Guide](https://docs.nvidia.com/deeplear
9
  ## Convert model
10
 
11
  YOLOX models can be easily conveted to TensorRT models using torch2trt
12
-
13
  If you want to convert our model, use the flag -n to specify a model name:
14
  ```shell
15
  python tools/trt.py -n <YOLOX_MODEL_NAME> -c <YOLOX_CHECKPOINT>
@@ -19,7 +19,7 @@ YOLOX models can be easily conveted to TensorRT models using torch2trt
19
  python tools/trt.py -n yolox-s -c your_ckpt.pth.tar
20
  ```
21
  <YOLOX_MODEL_NAME> can be: yolox-nano, yolox-tiny. yolox-s, yolox-m, yolox-l, yolox-x.
22
-
23
  If you want to convert your customized model, use the flag -f to specify you exp file:
24
  ```shell
25
  python tools/trt.py -f <YOLOX_EXP_FILE> -c <YOLOX_CHECKPOINT>
@@ -29,7 +29,7 @@ YOLOX models can be easily conveted to TensorRT models using torch2trt
29
  python tools/trt.py -f /path/to/your/yolox/exps/yolox_s.py -c your_ckpt.pth.tar
30
  ```
31
  *yolox_s.py* can be any exp file modified by you.
32
-
33
  The converted model and the serialized engine file (for C++ demo) will be saved on your experiment output dir.
34
 
35
  ## Demo
@@ -41,6 +41,6 @@ python tools/demo.py image -n yolox-s --trt --save_result
41
  ```
42
  or
43
  ```shell
44
- python tools/demo.py image -f exps/base/yolox_s.py --trt --save_result
45
  ```
46
 
 
9
  ## Convert model
10
 
11
  YOLOX models can be easily conveted to TensorRT models using torch2trt
12
+
13
  If you want to convert our model, use the flag -n to specify a model name:
14
  ```shell
15
  python tools/trt.py -n <YOLOX_MODEL_NAME> -c <YOLOX_CHECKPOINT>
 
19
  python tools/trt.py -n yolox-s -c your_ckpt.pth.tar
20
  ```
21
  <YOLOX_MODEL_NAME> can be: yolox-nano, yolox-tiny. yolox-s, yolox-m, yolox-l, yolox-x.
22
+
23
  If you want to convert your customized model, use the flag -f to specify you exp file:
24
  ```shell
25
  python tools/trt.py -f <YOLOX_EXP_FILE> -c <YOLOX_CHECKPOINT>
 
29
  python tools/trt.py -f /path/to/your/yolox/exps/yolox_s.py -c your_ckpt.pth.tar
30
  ```
31
  *yolox_s.py* can be any exp file modified by you.
32
+
33
  The converted model and the serialized engine file (for C++ demo) will be saved on your experiment output dir.
34
 
35
  ## Demo
 
41
  ```
42
  or
43
  ```shell
44
+ python tools/demo.py image -f exps/default/yolox_s.py --trt --save_result
45
  ```
46