Feng Wang
commited on
Commit
Β·
e23ae72
1
Parent(s):
cd9bfd6
feat(layers): support jit op (#1241)
Browse files- MANIFEST.in +2 -0
- README.md +1 -0
- setup.py +29 -34
- tools/eval.py +9 -1
- tools/train.py +2 -1
- yolox/__init__.py +0 -4
- yolox/exp/yolox_base.py +2 -7
- yolox/layers/__init__.py +9 -1
- yolox/layers/{csrc/cocoeval β cocoeval}/cocoeval.cpp +0 -0
- yolox/layers/{csrc/cocoeval β cocoeval}/cocoeval.h +13 -0
- yolox/layers/csrc/vision.cpp +0 -13
- yolox/layers/fast_coco_eval_api.py +7 -6
- yolox/layers/jit_ops.py +138 -0
- yolox/utils/dist.py +8 -1
MANIFEST.in
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
include requirements.txt
|
2 |
+
recursive-include yolox *.cpp *.h *.cu *.cuh *.cc
|
README.md
CHANGED
@@ -10,6 +10,7 @@ This repo is an implementation of PyTorch version YOLOX, there is also a [MegEng
|
|
10 |
<img src="assets/git_fig.png" width="1000" >
|
11 |
|
12 |
## Updates!!
|
|
|
13 |
* γ2021/08/19γ We optimize the training process with **2x** faster training and **~1%** higher performance! See [notes](docs/updates_note.md) for more details.
|
14 |
* γ2021/08/05γ We release [MegEngine version YOLOX](https://github.com/MegEngine/YOLOX).
|
15 |
* γ2021/07/28γ We fix the fatal error of [memory leak](https://github.com/Megvii-BaseDetection/YOLOX/issues/103)
|
|
|
10 |
<img src="assets/git_fig.png" width="1000" >
|
11 |
|
12 |
## Updates!!
|
13 |
+
* γ2022/04/14γ We suport jit compile op.
|
14 |
* γ2021/08/19γ We optimize the training process with **2x** faster training and **~1%** higher performance! See [notes](docs/updates_note.md) for more details.
|
15 |
* γ2021/08/05γ We release [MegEngine version YOLOX](https://github.com/MegEngine/YOLOX).
|
16 |
* γ2021/07/28γ We fix the fatal error of [memory leak](https://github.com/Megvii-BaseDetection/YOLOX/issues/103)
|
setup.py
CHANGED
@@ -3,38 +3,14 @@
|
|
3 |
|
4 |
import re
|
5 |
import setuptools
|
6 |
-
import
|
7 |
-
from os import path
|
8 |
-
import torch
|
9 |
-
from torch.utils.cpp_extension import CppExtension
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
sources = glob.glob(path.join(extensions_dir, "**", "*.cpp"))
|
18 |
-
|
19 |
-
sources = [main_source] + sources
|
20 |
-
extension = CppExtension
|
21 |
-
|
22 |
-
extra_compile_args = {"cxx": ["-O3"]}
|
23 |
-
define_macros = []
|
24 |
-
|
25 |
-
include_dirs = [extensions_dir]
|
26 |
-
|
27 |
-
ext_modules = [
|
28 |
-
extension(
|
29 |
-
"yolox._C",
|
30 |
-
sources,
|
31 |
-
include_dirs=include_dirs,
|
32 |
-
define_macros=define_macros,
|
33 |
-
extra_compile_args=extra_compile_args,
|
34 |
-
)
|
35 |
-
]
|
36 |
-
|
37 |
-
return ext_modules
|
38 |
|
39 |
|
40 |
def get_package_dir():
|
@@ -67,23 +43,42 @@ def get_long_description():
|
|
67 |
return long_description
|
68 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
setuptools.setup(
|
71 |
name="yolox",
|
72 |
version=get_yolox_version(),
|
73 |
author="megvii basedet team",
|
74 |
url="https://github.com/Megvii-BaseDetection/YOLOX",
|
75 |
package_dir=get_package_dir(),
|
|
|
76 |
python_requires=">=3.6",
|
77 |
install_requires=get_install_requirements(),
|
|
|
78 |
long_description=get_long_description(),
|
79 |
long_description_content_type="text/markdown",
|
80 |
-
|
|
|
|
|
81 |
classifiers=[
|
82 |
"Programming Language :: Python :: 3", "Operating System :: OS Independent",
|
83 |
"License :: OSI Approved :: Apache Software License",
|
84 |
],
|
85 |
-
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
|
86 |
-
packages=setuptools.find_packages(),
|
87 |
project_urls={
|
88 |
"Documentation": "https://yolox.readthedocs.io",
|
89 |
"Source": "https://github.com/Megvii-BaseDetection/YOLOX",
|
|
|
3 |
|
4 |
import re
|
5 |
import setuptools
|
6 |
+
import sys
|
|
|
|
|
|
|
7 |
|
8 |
+
TORCH_AVAILABLE = True
|
9 |
+
try:
|
10 |
+
import torch
|
11 |
+
except ImportError:
|
12 |
+
TORCH_AVAILABLE = False
|
13 |
+
print("[WARNING] Unable to import torch, pre-compiling ops will be disabled.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
def get_package_dir():
|
|
|
43 |
return long_description
|
44 |
|
45 |
|
46 |
+
def get_ext_modules():
|
47 |
+
ext_module = []
|
48 |
+
if sys.platform != "win32": # pre-compile ops on linux
|
49 |
+
assert TORCH_AVAILABLE, "torch is required for pre-compiling ops, please install it first."
|
50 |
+
# if any other op is added, please also add it here
|
51 |
+
from yolox.layers import FastCOCOEvalOp
|
52 |
+
ext_module.append(FastCOCOEvalOp().build_op())
|
53 |
+
return ext_module
|
54 |
+
|
55 |
+
|
56 |
+
def get_cmd_class():
|
57 |
+
cmdclass = {}
|
58 |
+
if TORCH_AVAILABLE:
|
59 |
+
cmdclass["build_ext"] = torch.utils.cpp_extension.BuildExtension
|
60 |
+
return cmdclass
|
61 |
+
|
62 |
+
|
63 |
setuptools.setup(
|
64 |
name="yolox",
|
65 |
version=get_yolox_version(),
|
66 |
author="megvii basedet team",
|
67 |
url="https://github.com/Megvii-BaseDetection/YOLOX",
|
68 |
package_dir=get_package_dir(),
|
69 |
+
packages=setuptools.find_packages(exclude=("tests", "tools")) + list(get_package_dir().keys()),
|
70 |
python_requires=">=3.6",
|
71 |
install_requires=get_install_requirements(),
|
72 |
+
setup_requires=["wheel"], # avoid building error when pip is not updated
|
73 |
long_description=get_long_description(),
|
74 |
long_description_content_type="text/markdown",
|
75 |
+
include_package_data=True, # include files in MANIFEST.in
|
76 |
+
ext_modules=get_ext_modules(),
|
77 |
+
cmdclass=get_cmd_class(),
|
78 |
classifiers=[
|
79 |
"Programming Language :: Python :: 3", "Operating System :: OS Independent",
|
80 |
"License :: OSI Approved :: Apache Software License",
|
81 |
],
|
|
|
|
|
82 |
project_urls={
|
83 |
"Documentation": "https://yolox.readthedocs.io",
|
84 |
"Source": "https://github.com/Megvii-BaseDetection/YOLOX",
|
tools/eval.py
CHANGED
@@ -14,7 +14,14 @@ from torch.nn.parallel import DistributedDataParallel as DDP
|
|
14 |
|
15 |
from yolox.core import launch
|
16 |
from yolox.exp import get_exp
|
17 |
-
from yolox.utils import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def make_parser():
|
@@ -190,6 +197,7 @@ def main(exp, args, num_gpu):
|
|
190 |
|
191 |
|
192 |
if __name__ == "__main__":
|
|
|
193 |
args = make_parser().parse_args()
|
194 |
exp = get_exp(args.exp_file, args.name)
|
195 |
exp.merge(args.opts)
|
|
|
14 |
|
15 |
from yolox.core import launch
|
16 |
from yolox.exp import get_exp
|
17 |
+
from yolox.utils import (
|
18 |
+
configure_module,
|
19 |
+
configure_nccl,
|
20 |
+
fuse_model,
|
21 |
+
get_local_rank,
|
22 |
+
get_model_info,
|
23 |
+
setup_logger
|
24 |
+
)
|
25 |
|
26 |
|
27 |
def make_parser():
|
|
|
197 |
|
198 |
|
199 |
if __name__ == "__main__":
|
200 |
+
configure_module()
|
201 |
args = make_parser().parse_args()
|
202 |
exp = get_exp(args.exp_file, args.name)
|
203 |
exp.merge(args.opts)
|
tools/train.py
CHANGED
@@ -12,7 +12,7 @@ import torch.backends.cudnn as cudnn
|
|
12 |
|
13 |
from yolox.core import Trainer, launch
|
14 |
from yolox.exp import get_exp
|
15 |
-
from yolox.utils import configure_nccl, configure_omp, get_num_devices
|
16 |
|
17 |
|
18 |
def make_parser():
|
@@ -118,6 +118,7 @@ def main(exp, args):
|
|
118 |
|
119 |
|
120 |
if __name__ == "__main__":
|
|
|
121 |
args = make_parser().parse_args()
|
122 |
exp = get_exp(args.exp_file, args.name)
|
123 |
exp.merge(args.opts)
|
|
|
12 |
|
13 |
from yolox.core import Trainer, launch
|
14 |
from yolox.exp import get_exp
|
15 |
+
from yolox.utils import configure_module, configure_nccl, configure_omp, get_num_devices
|
16 |
|
17 |
|
18 |
def make_parser():
|
|
|
118 |
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
configure_module()
|
122 |
args = make_parser().parse_args()
|
123 |
exp = get_exp(args.exp_file, args.name)
|
124 |
exp.merge(args.opts)
|
yolox/__init__.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
# -*- coding:utf-8 -*-
|
3 |
|
4 |
-
from .utils import configure_module
|
5 |
-
|
6 |
-
configure_module()
|
7 |
-
|
8 |
__version__ = "0.2.0"
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
# -*- coding:utf-8 -*-
|
3 |
|
|
|
|
|
|
|
|
|
4 |
__version__ = "0.2.0"
|
yolox/exp/yolox_base.py
CHANGED
@@ -139,14 +139,9 @@ class Exp(BaseExp):
|
|
139 |
MosaicDetection,
|
140 |
worker_init_reset_seed,
|
141 |
)
|
142 |
-
from yolox.utils import
|
143 |
-
wait_for_the_master,
|
144 |
-
get_local_rank,
|
145 |
-
)
|
146 |
-
|
147 |
-
local_rank = get_local_rank()
|
148 |
|
149 |
-
with wait_for_the_master(
|
150 |
dataset = COCODataset(
|
151 |
data_dir=self.data_dir,
|
152 |
json_file=self.train_ann,
|
|
|
139 |
MosaicDetection,
|
140 |
worker_init_reset_seed,
|
141 |
)
|
142 |
+
from yolox.utils import wait_for_the_master
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
with wait_for_the_master():
|
145 |
dataset = COCODataset(
|
146 |
data_dir=self.data_dir,
|
147 |
json_file=self.train_ann,
|
yolox/layers/__init__.py
CHANGED
@@ -2,4 +2,12 @@
|
|
2 |
# -*- coding:utf-8 -*-
|
3 |
# Copyright (c) Megvii Inc. All rights reserved.
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
# -*- coding:utf-8 -*-
|
3 |
# Copyright (c) Megvii Inc. All rights reserved.
|
4 |
|
5 |
+
# import torch first to make jit op work without `ImportError of libc10.so`
|
6 |
+
import torch # noqa
|
7 |
+
|
8 |
+
from .jit_ops import FastCOCOEvalOp, JitOp
|
9 |
+
|
10 |
+
try:
|
11 |
+
from .fast_coco_eval_api import COCOeval_opt
|
12 |
+
except ImportError: # exception will be raised when users build yolox from source
|
13 |
+
pass
|
yolox/layers/{csrc/cocoeval β cocoeval}/cocoeval.cpp
RENAMED
File without changes
|
yolox/layers/{csrc/cocoeval β cocoeval}/cocoeval.h
RENAMED
@@ -83,3 +83,16 @@ py::dict Accumulate(
|
|
83 |
const std::vector<ImageEvaluation>& evalutations);
|
84 |
|
85 |
} // namespace COCOeval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
const std::vector<ImageEvaluation>& evalutations);
|
84 |
|
85 |
} // namespace COCOeval
|
86 |
+
|
87 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
88 |
+
{
|
89 |
+
m.def("COCOevalAccumulate", &COCOeval::Accumulate, "COCOeval::Accumulate");
|
90 |
+
m.def(
|
91 |
+
"COCOevalEvaluateImages",
|
92 |
+
&COCOeval::EvaluateImages,
|
93 |
+
"COCOeval::EvaluateImages");
|
94 |
+
pybind11::class_<COCOeval::InstanceAnnotation>(m, "InstanceAnnotation")
|
95 |
+
.def(pybind11::init<uint64_t, double, double, bool, bool>());
|
96 |
+
pybind11::class_<COCOeval::ImageEvaluation>(m, "ImageEvaluation")
|
97 |
+
.def(pybind11::init<>());
|
98 |
+
}
|
yolox/layers/csrc/vision.cpp
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
#include "cocoeval/cocoeval.h"
|
2 |
-
|
3 |
-
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
4 |
-
m.def("COCOevalAccumulate", &COCOeval::Accumulate, "COCOeval::Accumulate");
|
5 |
-
m.def(
|
6 |
-
"COCOevalEvaluateImages",
|
7 |
-
&COCOeval::EvaluateImages,
|
8 |
-
"COCOeval::EvaluateImages");
|
9 |
-
pybind11::class_<COCOeval::InstanceAnnotation>(m, "InstanceAnnotation")
|
10 |
-
.def(pybind11::init<uint64_t, double, double, bool, bool>());
|
11 |
-
pybind11::class_<COCOeval::ImageEvaluation>(m, "ImageEvaluation")
|
12 |
-
.def(pybind11::init<>());
|
13 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yolox/layers/fast_coco_eval_api.py
CHANGED
@@ -11,9 +11,7 @@ import time
|
|
11 |
import numpy as np
|
12 |
from pycocotools.cocoeval import COCOeval
|
13 |
|
14 |
-
|
15 |
-
# in YOLOX, env is already set in __init__.py.
|
16 |
-
from yolox import _C
|
17 |
|
18 |
|
19 |
class COCOeval_opt(COCOeval):
|
@@ -21,6 +19,9 @@ class COCOeval_opt(COCOeval):
|
|
21 |
This is a slightly modified version of the original COCO API, where the functions evaluateImg()
|
22 |
and accumulate() are implemented in C++ to speedup evaluation
|
23 |
"""
|
|
|
|
|
|
|
24 |
|
25 |
def evaluate(self):
|
26 |
"""
|
@@ -72,7 +73,7 @@ class COCOeval_opt(COCOeval):
|
|
72 |
# to access in C++
|
73 |
instances_cpp = []
|
74 |
for instance in instances:
|
75 |
-
instance_cpp =
|
76 |
int(instance["id"]),
|
77 |
instance["score"] if is_det else instance.get("score", 0.0),
|
78 |
instance["area"],
|
@@ -106,7 +107,7 @@ class COCOeval_opt(COCOeval):
|
|
106 |
]
|
107 |
|
108 |
# Call C++ implementation of self.evaluateImgs()
|
109 |
-
self._evalImgs_cpp =
|
110 |
p.areaRng,
|
111 |
maxDet,
|
112 |
p.iouThrs,
|
@@ -131,7 +132,7 @@ class COCOeval_opt(COCOeval):
|
|
131 |
if not hasattr(self, "_evalImgs_cpp"):
|
132 |
print("Please run evaluate() first")
|
133 |
|
134 |
-
self.eval =
|
135 |
|
136 |
# recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections
|
137 |
self.eval["recall"] = np.array(self.eval["recall"]).reshape(
|
|
|
11 |
import numpy as np
|
12 |
from pycocotools.cocoeval import COCOeval
|
13 |
|
14 |
+
from .jit_ops import FastCOCOEvalOp
|
|
|
|
|
15 |
|
16 |
|
17 |
class COCOeval_opt(COCOeval):
|
|
|
19 |
This is a slightly modified version of the original COCO API, where the functions evaluateImg()
|
20 |
and accumulate() are implemented in C++ to speedup evaluation
|
21 |
"""
|
22 |
+
def __init__(self, *args, **kwargs):
|
23 |
+
super().__init__(*args, **kwargs)
|
24 |
+
self.module = FastCOCOEvalOp().load()
|
25 |
|
26 |
def evaluate(self):
|
27 |
"""
|
|
|
73 |
# to access in C++
|
74 |
instances_cpp = []
|
75 |
for instance in instances:
|
76 |
+
instance_cpp = self.module.InstanceAnnotation(
|
77 |
int(instance["id"]),
|
78 |
instance["score"] if is_det else instance.get("score", 0.0),
|
79 |
instance["area"],
|
|
|
107 |
]
|
108 |
|
109 |
# Call C++ implementation of self.evaluateImgs()
|
110 |
+
self._evalImgs_cpp = self.module.COCOevalEvaluateImages(
|
111 |
p.areaRng,
|
112 |
maxDet,
|
113 |
p.iouThrs,
|
|
|
132 |
if not hasattr(self, "_evalImgs_cpp"):
|
133 |
print("Please run evaluate() first")
|
134 |
|
135 |
+
self.eval = self.module.COCOevalAccumulate(self._paramsEval, self._evalImgs_cpp)
|
136 |
|
137 |
# recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections
|
138 |
self.eval["recall"] = np.array(self.eval["recall"]).reshape(
|
yolox/layers/jit_ops.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# Copyright (c) Megvii, Inc. and its affiliates. All Rights Reserved
|
3 |
+
|
4 |
+
import glob
|
5 |
+
import importlib
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
from typing import List
|
10 |
+
|
11 |
+
__all__ = ["JitOp", "FastCOCOEvalOp"]
|
12 |
+
|
13 |
+
|
14 |
+
class JitOp:
|
15 |
+
"""
|
16 |
+
Just-in-time compilation of ops.
|
17 |
+
|
18 |
+
Some code of `JitOp` is inspired by `deepspeed.op_builder`,
|
19 |
+
check the following link for more details:
|
20 |
+
https://github.com/microsoft/DeepSpeed/blob/master/op_builder/builder.py
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, name):
|
24 |
+
self.name = name
|
25 |
+
|
26 |
+
def absolute_name(self) -> str:
|
27 |
+
"""Get absolute build path for cases where the op is pre-installed."""
|
28 |
+
pass
|
29 |
+
|
30 |
+
def sources(self) -> List:
|
31 |
+
"""Get path list of source files of op.
|
32 |
+
|
33 |
+
NOTE: the path should be elative to root of package during building,
|
34 |
+
Otherwise, exception will be raised when building package.
|
35 |
+
However, for runtime building, path will be absolute.
|
36 |
+
"""
|
37 |
+
pass
|
38 |
+
|
39 |
+
def include_dirs(self) -> List:
|
40 |
+
"""
|
41 |
+
Get list of include paths, relative to root of package.
|
42 |
+
|
43 |
+
NOTE: the path should be elative to root of package.
|
44 |
+
Otherwise, exception will be raised when building package.
|
45 |
+
"""
|
46 |
+
return []
|
47 |
+
|
48 |
+
def define_macros(self) -> List:
|
49 |
+
"""Get list of macros to define for op"""
|
50 |
+
return []
|
51 |
+
|
52 |
+
def cxx_args(self) -> List:
|
53 |
+
"""Get optional list of compiler flags to forward"""
|
54 |
+
args = ["-O2"] if sys.platform == "win32" else ["-O3", "-std=c++14", "-g", "-Wno-reorder"]
|
55 |
+
return args
|
56 |
+
|
57 |
+
def nvcc_args(self) -> List:
|
58 |
+
"""Get optional list of compiler flags to forward to nvcc when building CUDA sources"""
|
59 |
+
args = [
|
60 |
+
"-O3", "--use_fast_math",
|
61 |
+
"-std=c++17" if sys.platform == "win32" else "-std=c++14",
|
62 |
+
"-U__CUDA_NO_HALF_OPERATORS__",
|
63 |
+
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
64 |
+
"-U__CUDA_NO_HALF2_OPERATORS__",
|
65 |
+
]
|
66 |
+
return args
|
67 |
+
|
68 |
+
def build_op(self):
|
69 |
+
from torch.utils.cpp_extension import CppExtension
|
70 |
+
return CppExtension(
|
71 |
+
name=self.absolute_name(),
|
72 |
+
sources=self.sources(),
|
73 |
+
include_dirs=self.include_dirs(),
|
74 |
+
define_macros=self.define_macros(),
|
75 |
+
extra_compile_args={
|
76 |
+
"cxx": self.cxx_args(),
|
77 |
+
},
|
78 |
+
)
|
79 |
+
|
80 |
+
def load(self, verbose=True):
|
81 |
+
try:
|
82 |
+
# try to import op from pre-installed package
|
83 |
+
return importlib.import_module(self.absolute_name())
|
84 |
+
except Exception: # op not compiled, jit load
|
85 |
+
from yolox.utils import wait_for_the_master
|
86 |
+
with wait_for_the_master(): # to avoid race condition
|
87 |
+
return self.jit_load(verbose)
|
88 |
+
|
89 |
+
def jit_load(self, verbose=True):
|
90 |
+
from torch.utils.cpp_extension import load
|
91 |
+
from loguru import logger
|
92 |
+
try:
|
93 |
+
import ninja # noqa
|
94 |
+
except ImportError:
|
95 |
+
if verbose:
|
96 |
+
logger.warning(
|
97 |
+
f"Ninja is not installed, fall back to normal installation for {self.name}."
|
98 |
+
)
|
99 |
+
|
100 |
+
build_tik = time.time()
|
101 |
+
# build op and load
|
102 |
+
op_module = load(
|
103 |
+
name=self.name,
|
104 |
+
sources=self.sources(),
|
105 |
+
extra_cflags=self.cxx_args(),
|
106 |
+
extra_cuda_cflags=self.nvcc_args(),
|
107 |
+
verbose=verbose,
|
108 |
+
)
|
109 |
+
build_duration = time.time() - build_tik
|
110 |
+
if verbose:
|
111 |
+
logger.info(f"Load {self.name} op in {build_duration:.3f}s.")
|
112 |
+
return op_module
|
113 |
+
|
114 |
+
def clear_dynamic_library(self):
|
115 |
+
"""Remove dynamic libraray files generated by JIT compilation."""
|
116 |
+
module = self.load()
|
117 |
+
os.remove(module.__file__)
|
118 |
+
|
119 |
+
|
120 |
+
class FastCOCOEvalOp(JitOp):
|
121 |
+
|
122 |
+
def __init__(self, name="fast_cocoeval"):
|
123 |
+
super().__init__(name=name)
|
124 |
+
|
125 |
+
def absolute_name(self):
|
126 |
+
return f'yolox.layers.{self.name}'
|
127 |
+
|
128 |
+
def sources(self):
|
129 |
+
sources = glob.glob(os.path.join("yolox", "layers", "cocoeval", "*.cpp"))
|
130 |
+
if not sources: # source will be empty list if the so file is removed after install
|
131 |
+
# use abosolute path to compile
|
132 |
+
import yolox
|
133 |
+
code_path = os.path.join(yolox.__path__[0], "layers", "cocoeval", "*.cpp")
|
134 |
+
sources = glob.glob(code_path)
|
135 |
+
return sources
|
136 |
+
|
137 |
+
def include_dirs(self):
|
138 |
+
return [os.path.join("yolox", "layers", "cocoeval")]
|
yolox/utils/dist.py
CHANGED
@@ -49,10 +49,17 @@ def get_num_devices():
|
|
49 |
|
50 |
|
51 |
@contextmanager
|
52 |
-
def wait_for_the_master(local_rank: int):
|
53 |
"""
|
54 |
Make all processes waiting for the master to do some task.
|
|
|
|
|
|
|
|
|
55 |
"""
|
|
|
|
|
|
|
56 |
if local_rank > 0:
|
57 |
dist.barrier()
|
58 |
yield
|
|
|
49 |
|
50 |
|
51 |
@contextmanager
|
52 |
+
def wait_for_the_master(local_rank: int = None):
|
53 |
"""
|
54 |
Make all processes waiting for the master to do some task.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
local_rank (int): the rank of the current process. Default to None.
|
58 |
+
If None, it will use the rank of the current process.
|
59 |
"""
|
60 |
+
if local_rank is None:
|
61 |
+
local_rank = get_local_rank()
|
62 |
+
|
63 |
if local_rank > 0:
|
64 |
dist.barrier()
|
65 |
yield
|