File size: 1,180 Bytes
4b848f2
 
9506f43
7a1b8c6
9506f43
4b848f2
 
9506f43
 
 
 
 
 
4b848f2
7a1b8c6
 
 
 
 
 
 
9506f43
4b848f2
57822a3
 
 
 
 
9506f43
 
 
 
7a1b8c6
 
 
 
 
 
 
9506f43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
from PIL import Image
from transformers import ViTForImageClassification
from config import UNTRAINED, labels, TRAINED
from utils import predict


model_untrained = ViTForImageClassification.from_pretrained(
    UNTRAINED,
    num_labels=len(labels),
    id2label={str(i): c for i, c in enumerate(labels)},
    label2id={c: str(i) for i, c in enumerate(labels)},
)

model_trained = ViTForImageClassification.from_pretrained(
    TRAINED,
    num_labels=len(labels),
    id2label={str(i): c for i, c in enumerate(labels)},
    label2id={c: str(i) for i, c in enumerate(labels)},
)

st.title("Detect Hurricane Damage")

file_name = st.file_uploader("Upload a satellite image")
if file_name is not None:
    image = Image.open(file_name)
    st.image(image, use_container_width=True)

col1, col2 = st.columns(2)
with col1:
    st.markdown("## Pre-Trained Model")
    if file_name is not None:
        label = predict(model_untrained, image)
        st.write(f"Predicted label: {label}")

with col2:
    st.markdown("## Fine-Tuned Model")
    if file_name is not None:
        label = predict(model_trained, image)
        st.write(f"Predicted label: {label}")