Spaces:
Sleeping
Sleeping
File size: 6,730 Bytes
181d94d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
#include "darknet.h"
#ifdef OPENCV
image get_image_from_stream(CvCapture *cap);
image ipl_to_image(IplImage* src);
void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters);
typedef struct {
float *x;
float *y;
} float_pair;
float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int steps)
{
int b;
assert(net.batch == steps + 1);
image out_im = get_network_image(net);
int output_size = out_im.w*out_im.h*out_im.c;
printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
float *feats = calloc(net.batch*batch*output_size, sizeof(float));
for(b = 0; b < batch; ++b){
int input_size = net.w*net.h*net.c;
float *input = calloc(input_size*net.batch, sizeof(float));
char *filename = files[rand()%n];
CvCapture *cap = cvCaptureFromFile(filename);
int frames = cvGetCaptureProperty(cap, CV_CAP_PROP_FRAME_COUNT);
int index = rand() % (frames - steps - 2);
if (frames < (steps + 4)){
--b;
free(input);
continue;
}
printf("frames: %d, index: %d\n", frames, index);
cvSetCaptureProperty(cap, CV_CAP_PROP_POS_FRAMES, index);
int i;
for(i = 0; i < net.batch; ++i){
IplImage* src = cvQueryFrame(cap);
image im = ipl_to_image(src);
rgbgr_image(im);
image re = resize_image(im, net.w, net.h);
//show_image(re, "loaded");
//cvWaitKey(10);
memcpy(input + i*input_size, re.data, input_size*sizeof(float));
free_image(im);
free_image(re);
}
float *output = network_predict(net, input);
free(input);
for(i = 0; i < net.batch; ++i){
memcpy(feats + (b + i*batch)*output_size, output + i*output_size, output_size*sizeof(float));
}
cvReleaseCapture(&cap);
}
//printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
float_pair p = {0};
p.x = feats;
p.y = feats + output_size*batch; //+ out_im.w*out_im.h*out_im.c;
return p;
}
void train_vid_rnn(char *cfgfile, char *weightfile)
{
char *train_videos = "data/vid/train.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
int i = *net.seen/imgs;
list *plist = get_paths(train_videos);
int N = plist->size;
char **paths = (char **)list_to_array(plist);
clock_t time;
int steps = net.time_steps;
int batch = net.batch / net.time_steps;
network extractor = parse_network_cfg("cfg/extractor.cfg");
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
float_pair p = get_rnn_vid_data(extractor, paths, N, batch, steps);
copy_cpu(net.inputs*net.batch, p.x, 1, net.input, 1);
copy_cpu(net.truths*net.batch, p.y, 1, net.truth, 1);
float loss = train_network_datum(net) / (net.batch);
free(p.x);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time));
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%10==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
image save_reconstruction(network net, image *init, float *feat, char *name, int i)
{
image recon;
if (init) {
recon = copy_image(*init);
} else {
recon = make_random_image(net.w, net.h, 3);
}
image update = make_image(net.w, net.h, 3);
reconstruct_picture(net, feat, recon, update, .01, .9, .1, 2, 50);
char buff[256];
sprintf(buff, "%s%d", name, i);
save_image(recon, buff);
free_image(update);
return recon;
}
void generate_vid_rnn(char *cfgfile, char *weightfile)
{
network extractor = parse_network_cfg("cfg/extractor.recon.cfg");
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&extractor, 1);
set_batch_network(&net, 1);
int i;
CvCapture *cap = cvCaptureFromFile("/extra/vid/ILSVRC2015/Data/VID/snippets/val/ILSVRC2015_val_00007030.mp4");
float *feat;
float *next;
image last;
for(i = 0; i < 25; ++i){
image im = get_image_from_stream(cap);
image re = resize_image(im, extractor.w, extractor.h);
feat = network_predict(extractor, re.data);
if(i > 0){
printf("%f %f\n", mean_array(feat, 14*14*512), variance_array(feat, 14*14*512));
printf("%f %f\n", mean_array(next, 14*14*512), variance_array(next, 14*14*512));
printf("%f\n", mse_array(feat, 14*14*512));
axpy_cpu(14*14*512, -1, feat, 1, next, 1);
printf("%f\n", mse_array(next, 14*14*512));
}
next = network_predict(net, feat);
free_image(im);
free_image(save_reconstruction(extractor, 0, feat, "feat", i));
free_image(save_reconstruction(extractor, 0, next, "next", i));
if (i==24) last = copy_image(re);
free_image(re);
}
for(i = 0; i < 30; ++i){
next = network_predict(net, next);
image new = save_reconstruction(extractor, &last, next, "new", i);
free_image(last);
last = new;
}
}
void run_vid_rnn(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
//char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "train")) train_vid_rnn(cfg, weights);
else if(0==strcmp(argv[2], "generate")) generate_vid_rnn(cfg, weights);
}
#else
void run_vid_rnn(int argc, char **argv){}
#endif
|