Spaces:
Sleeping
Sleeping
File size: 4,403 Bytes
181d94d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
#include "darknet.h"
void train_writing(char *cfgfile, char *weightfile)
{
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
float avg_loss = -1;
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
list *plist = get_paths("figures.list");
char **paths = (char **)list_to_array(plist);
clock_t time;
int N = plist->size;
printf("N: %d\n", N);
image out = get_network_image(net);
data train, buffer;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.out_w = out.w;
args.out_h = out.h;
args.paths = paths;
args.n = imgs;
args.m = N;
args.d = &buffer;
args.type = WRITING_DATA;
pthread_t load_thread = load_data_in_thread(args);
int epoch = (*net.seen)/N;
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded %lf seconds\n",sec(clock()-time));
time=clock();
float loss = train_network(net, train);
/*
image pred = float_to_image(64, 64, 1, out);
print_image(pred);
*/
/*
image im = float_to_image(256, 256, 3, train.X.vals[0]);
image lab = float_to_image(64, 64, 1, train.y.vals[0]);
image pred = float_to_image(64, 64, 1, out);
show_image(im, "image");
show_image(lab, "label");
print_image(lab);
show_image(pred, "pred");
cvWaitKey(0);
*/
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
free_data(train);
if(get_current_batch(net)%100 == 0){
char buff[256];
sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net));
save_weights(net, buff);
}
if(*net.seen/N > epoch){
epoch = *net.seen/N;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
}
}
}
void test_writing(char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 0, 0);
resize_network(&net, im.w, im.h);
printf("%d %d %d\n", im.h, im.w, im.c);
float *X = im.data;
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
image pred = get_network_image(net);
image upsampled = resize_image(pred, im.w, im.h);
image thresh = threshold_image(upsampled, .5);
pred = thresh;
show_image(pred, "prediction");
show_image(im, "orig");
#ifdef OPENCV
cvWaitKey(0);
cvDestroyAllWindows();
#endif
free_image(upsampled);
free_image(thresh);
free_image(im);
if (filename) break;
}
}
void run_writing(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5] : 0;
if(0==strcmp(argv[2], "train")) train_writing(cfg, weights);
else if(0==strcmp(argv[2], "test")) test_writing(cfg, weights, filename);
}
|