yolov2 / app.py
till-onethousand's picture
lean
b6a2211
raw
history blame
959 Bytes
import gradio as gr
model = None
# ./darknet detect cfg/yolov2.cfg yolov2.weights ~/OneDrive\ -\ One\ Thousand\ GmbH/3.jpg
def predict_image(img, conf_threshold, iou_threshold, model_name):
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds."""
pass
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
gr.Radio(choices=["yolo11n", "yolo11s", "yolo11n-seg", "yolo11s-seg", "yolo11n-pose", "yolo11s-pose"], label="Model Name", value="yolo11n"),
],
outputs=gr.Image(type="pil", label="Result"),
title="Ultralytics Gradio Application πŸš€",
description="Upload images for inference. The Ultralytics YOLO11n model is used by default.",
)
iface.launch(share=True)