Spaces:
Running
Running
void extend_data_truth(data *d, int n, float val) | |
{ | |
int i, j; | |
for(i = 0; i < d->y.rows; ++i){ | |
d->y.vals[i] = realloc(d->y.vals[i], (d->y.cols+n)*sizeof(float)); | |
for(j = 0; j < n; ++j){ | |
d->y.vals[i][d->y.cols + j] = val; | |
} | |
} | |
d->y.cols += n; | |
} | |
matrix network_loss_data(network *net, data test) | |
{ | |
int i,b; | |
int k = 1; | |
matrix pred = make_matrix(test.X.rows, k); | |
float *X = calloc(net->batch*test.X.cols, sizeof(float)); | |
float *y = calloc(net->batch*test.y.cols, sizeof(float)); | |
for(i = 0; i < test.X.rows; i += net->batch){ | |
for(b = 0; b < net->batch; ++b){ | |
if(i+b == test.X.rows) break; | |
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); | |
memcpy(y+b*test.y.cols, test.y.vals[i+b], test.y.cols*sizeof(float)); | |
} | |
network orig = *net; | |
net->input = X; | |
net->truth = y; | |
net->train = 0; | |
net->delta = 0; | |
forward_network(net); | |
*net = orig; | |
float *delta = net->layers[net->n-1].output; | |
for(b = 0; b < net->batch; ++b){ | |
if(i+b == test.X.rows) break; | |
int t = max_index(y + b*test.y.cols, 1000); | |
float err = sum_array(delta + b*net->outputs, net->outputs); | |
pred.vals[i+b][0] = -err; | |
//pred.vals[i+b][0] = 1-delta[b*net->outputs + t]; | |
} | |
} | |
free(X); | |
free(y); | |
return pred; | |
} | |
void train_attention(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) | |
{ | |
int i, j; | |
float avg_cls_loss = -1; | |
float avg_att_loss = -1; | |
char *base = basecfg(cfgfile); | |
printf("%s\n", base); | |
printf("%d\n", ngpus); | |
network **nets = calloc(ngpus, sizeof(network*)); | |
srand(time(0)); | |
int seed = rand(); | |
for(i = 0; i < ngpus; ++i){ | |
srand(seed); | |
cuda_set_device(gpus[i]); | |
nets[i] = load_network(cfgfile, weightfile, clear); | |
nets[i]->learning_rate *= ngpus; | |
} | |
srand(time(0)); | |
network *net = nets[0]; | |
int imgs = net->batch * net->subdivisions * ngpus; | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
list *options = read_data_cfg(datacfg); | |
char *backup_directory = option_find_str(options, "backup", "/backup/"); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *train_list = option_find_str(options, "train", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(train_list); | |
char **paths = (char **)list_to_array(plist); | |
printf("%d\n", plist->size); | |
int N = plist->size; | |
double time; | |
int divs=3; | |
int size=2; | |
load_args args = {0}; | |
args.w = divs*net->w/size; | |
args.h = divs*net->h/size; | |
args.size = divs*net->w/size; | |
args.threads = 32; | |
args.hierarchy = net->hierarchy; | |
args.min = net->min_ratio*args.w; | |
args.max = net->max_ratio*args.w; | |
args.angle = net->angle; | |
args.aspect = net->aspect; | |
args.exposure = net->exposure; | |
args.saturation = net->saturation; | |
args.hue = net->hue; | |
args.paths = paths; | |
args.classes = classes; | |
args.n = imgs; | |
args.m = N; | |
args.labels = labels; | |
args.type = CLASSIFICATION_DATA; | |
data train; | |
data buffer; | |
pthread_t load_thread; | |
args.d = &buffer; | |
load_thread = load_data(args); | |
int epoch = (*net->seen)/N; | |
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ | |
time = what_time_is_it_now(); | |
pthread_join(load_thread, 0); | |
train = buffer; | |
load_thread = load_data(args); | |
data resized = resize_data(train, net->w, net->h); | |
extend_data_truth(&resized, divs*divs, 0); | |
data *tiles = tile_data(train, divs, size); | |
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); | |
time = what_time_is_it_now(); | |
float aloss = 0; | |
float closs = 0; | |
int z; | |
for (i = 0; i < divs*divs/ngpus; ++i) { | |
for(j = 0; j < ngpus; ++j){ | |
int index = i*ngpus + j; | |
extend_data_truth(tiles+index, divs*divs, SECRET_NUM); | |
matrix deltas = network_loss_data(nets[j], tiles[index]); | |
for(z = 0; z < resized.y.rows; ++z){ | |
resized.y.vals[z][train.y.cols + index] = deltas.vals[z][0]; | |
} | |
free_matrix(deltas); | |
} | |
} | |
int *inds = calloc(resized.y.rows, sizeof(int)); | |
for(z = 0; z < resized.y.rows; ++z){ | |
int index = max_index(resized.y.vals[z] + train.y.cols, divs*divs); | |
inds[z] = index; | |
for(i = 0; i < divs*divs; ++i){ | |
resized.y.vals[z][train.y.cols + i] = (i == index)? 1 : 0; | |
} | |
} | |
data best = select_data(tiles, inds); | |
free(inds); | |
if (ngpus == 1) { | |
closs = train_network(net, best); | |
} else { | |
closs = train_networks(nets, ngpus, best, 4); | |
} | |
for (i = 0; i < divs*divs; ++i) { | |
printf("%.2f ", resized.y.vals[0][train.y.cols + i]); | |
if((i+1)%divs == 0) printf("\n"); | |
free_data(tiles[i]); | |
} | |
free_data(best); | |
printf("\n"); | |
image im = float_to_image(64,64,3,resized.X.vals[0]); | |
//show_image(im, "orig"); | |
//cvWaitKey(100); | |
/* | |
image im1 = float_to_image(64,64,3,tiles[i].X.vals[0]); | |
image im2 = float_to_image(64,64,3,resized.X.vals[0]); | |
show_image(im1, "tile"); | |
show_image(im2, "res"); | |
*/ | |
if (ngpus == 1) { | |
aloss = train_network(net, resized); | |
} else { | |
aloss = train_networks(nets, ngpus, resized, 4); | |
} | |
for(i = 0; i < divs*divs; ++i){ | |
printf("%f ", nets[0]->output[1000 + i]); | |
if ((i+1) % divs == 0) printf("\n"); | |
} | |
printf("\n"); | |
free_data(resized); | |
free_data(train); | |
if(avg_cls_loss == -1) avg_cls_loss = closs; | |
if(avg_att_loss == -1) avg_att_loss = aloss; | |
avg_cls_loss = avg_cls_loss*.9 + closs*.1; | |
avg_att_loss = avg_att_loss*.9 + aloss*.1; | |
printf("%ld, %.3f: Att: %f, %f avg, Class: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, aloss, avg_att_loss, closs, avg_cls_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen); | |
if(*net->seen/N > epoch){ | |
epoch = *net->seen/N; | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); | |
save_weights(net, buff); | |
} | |
if(get_current_batch(net)%1000 == 0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup",backup_directory,base); | |
save_weights(net, buff); | |
} | |
} | |
char buff[256]; | |
sprintf(buff, "%s/%s.weights", backup_directory, base); | |
save_weights(net, buff); | |
pthread_join(load_thread, 0); | |
free_network(net); | |
free_ptrs((void**)labels, classes); | |
free_ptrs((void**)paths, plist->size); | |
free_list(plist); | |
free(base); | |
} | |
void validate_attention_single(char *datacfg, char *filename, char *weightfile) | |
{ | |
int i, j; | |
network *net = load_network(filename, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *leaf_list = option_find_str(options, "leaves", 0); | |
if(leaf_list) change_leaves(net->hierarchy, leaf_list); | |
char *valid_list = option_find_str(options, "valid", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
int topk = option_find_int(options, "top", 1); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(valid_list); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
float avg_acc = 0; | |
float avg_topk = 0; | |
int *indexes = calloc(topk, sizeof(int)); | |
int divs = 4; | |
int size = 2; | |
int extra = 0; | |
float *avgs = calloc(classes, sizeof(float)); | |
int *inds = calloc(divs*divs, sizeof(int)); | |
for(i = 0; i < m; ++i){ | |
int class = -1; | |
char *path = paths[i]; | |
for(j = 0; j < classes; ++j){ | |
if(strstr(path, labels[j])){ | |
class = j; | |
break; | |
} | |
} | |
image im = load_image_color(paths[i], 0, 0); | |
image resized = resize_min(im, net->w*divs/size); | |
image crop = crop_image(resized, (resized.w - net->w*divs/size)/2, (resized.h - net->h*divs/size)/2, net->w*divs/size, net->h*divs/size); | |
image rcrop = resize_image(crop, net->w, net->h); | |
//show_image(im, "orig"); | |
//show_image(crop, "cropped"); | |
//cvWaitKey(0); | |
float *pred = network_predict(net, rcrop.data); | |
//pred[classes + 56] = 0; | |
for(j = 0; j < divs*divs; ++j){ | |
printf("%.2f ", pred[classes + j]); | |
if((j+1)%divs == 0) printf("\n"); | |
} | |
printf("\n"); | |
copy_cpu(classes, pred, 1, avgs, 1); | |
top_k(pred + classes, divs*divs, divs*divs, inds); | |
show_image(crop, "crop"); | |
for(j = 0; j < extra; ++j){ | |
int index = inds[j]; | |
int row = index / divs; | |
int col = index % divs; | |
int y = row * crop.h / divs - (net->h - crop.h/divs)/2; | |
int x = col * crop.w / divs - (net->w - crop.w/divs)/2; | |
printf("%d %d %d %d\n", row, col, y, x); | |
image tile = crop_image(crop, x, y, net->w, net->h); | |
float *pred = network_predict(net, tile.data); | |
axpy_cpu(classes, 1., pred, 1, avgs, 1); | |
show_image(tile, "tile"); | |
//cvWaitKey(10); | |
} | |
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1); | |
if(rcrop.data != resized.data) free_image(rcrop); | |
if(resized.data != im.data) free_image(resized); | |
free_image(im); | |
free_image(crop); | |
top_k(pred, classes, topk, indexes); | |
if(indexes[0] == class) avg_acc += 1; | |
for(j = 0; j < topk; ++j){ | |
if(indexes[j] == class) avg_topk += 1; | |
} | |
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); | |
} | |
} | |
void validate_attention_multi(char *datacfg, char *filename, char *weightfile) | |
{ | |
int i, j; | |
network *net = load_network(filename, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(time(0)); | |
list *options = read_data_cfg(datacfg); | |
char *label_list = option_find_str(options, "labels", "data/labels.list"); | |
char *valid_list = option_find_str(options, "valid", "data/train.list"); | |
int classes = option_find_int(options, "classes", 2); | |
int topk = option_find_int(options, "top", 1); | |
char **labels = get_labels(label_list); | |
list *plist = get_paths(valid_list); | |
int scales[] = {224, 288, 320, 352, 384}; | |
int nscales = sizeof(scales)/sizeof(scales[0]); | |
char **paths = (char **)list_to_array(plist); | |
int m = plist->size; | |
free_list(plist); | |
float avg_acc = 0; | |
float avg_topk = 0; | |
int *indexes = calloc(topk, sizeof(int)); | |
for(i = 0; i < m; ++i){ | |
int class = -1; | |
char *path = paths[i]; | |
for(j = 0; j < classes; ++j){ | |
if(strstr(path, labels[j])){ | |
class = j; | |
break; | |
} | |
} | |
float *pred = calloc(classes, sizeof(float)); | |
image im = load_image_color(paths[i], 0, 0); | |
for(j = 0; j < nscales; ++j){ | |
image r = resize_min(im, scales[j]); | |
resize_network(net, r.w, r.h); | |
float *p = network_predict(net, r.data); | |
if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1 , 1); | |
axpy_cpu(classes, 1, p, 1, pred, 1); | |
flip_image(r); | |
p = network_predict(net, r.data); | |
axpy_cpu(classes, 1, p, 1, pred, 1); | |
if(r.data != im.data) free_image(r); | |
} | |
free_image(im); | |
top_k(pred, classes, topk, indexes); | |
free(pred); | |
if(indexes[0] == class) avg_acc += 1; | |
for(j = 0; j < topk; ++j){ | |
if(indexes[j] == class) avg_topk += 1; | |
} | |
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); | |
} | |
} | |
void predict_attention(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top) | |
{ | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
list *options = read_data_cfg(datacfg); | |
char *name_list = option_find_str(options, "names", 0); | |
if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); | |
if(top == 0) top = option_find_int(options, "top", 1); | |
int i = 0; | |
char **names = get_labels(name_list); | |
clock_t time; | |
int *indexes = calloc(top, sizeof(int)); | |
char buff[256]; | |
char *input = buff; | |
while(1){ | |
if(filename){ | |
strncpy(input, filename, 256); | |
}else{ | |
printf("Enter Image Path: "); | |
fflush(stdout); | |
input = fgets(input, 256, stdin); | |
if(!input) return; | |
strtok(input, "\n"); | |
} | |
image im = load_image_color(input, 0, 0); | |
image r = letterbox_image(im, net->w, net->h); | |
//resize_network(&net, r.w, r.h); | |
//printf("%d %d\n", r.w, r.h); | |
float *X = r.data; | |
time=clock(); | |
float *predictions = network_predict(net, X); | |
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1); | |
top_k(predictions, net->outputs, top, indexes); | |
fprintf(stderr, "%s: Predicted in %f seconds.\n", input, sec(clock()-time)); | |
for(i = 0; i < top; ++i){ | |
int index = indexes[i]; | |
//if(net->hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net->hierarchy->parent[index] >= 0) ? names[net->hierarchy->parent[index]] : "Root"); | |
//else printf("%s: %f\n",names[index], predictions[index]); | |
printf("%5.2f%%: %s\n", predictions[index]*100, names[index]); | |
} | |
if(r.data != im.data) free_image(r); | |
free_image(im); | |
if (filename) break; | |
} | |
} | |
void run_attention(int argc, char **argv) | |
{ | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); | |
int ngpus; | |
int *gpus = read_intlist(gpu_list, &ngpus, gpu_index); | |
int top = find_int_arg(argc, argv, "-t", 0); | |
int clear = find_arg(argc, argv, "-clear"); | |
char *data = argv[3]; | |
char *cfg = argv[4]; | |
char *weights = (argc > 5) ? argv[5] : 0; | |
char *filename = (argc > 6) ? argv[6]: 0; | |
char *layer_s = (argc > 7) ? argv[7]: 0; | |
if(0==strcmp(argv[2], "predict")) predict_attention(data, cfg, weights, filename, top); | |
else if(0==strcmp(argv[2], "train")) train_attention(data, cfg, weights, gpus, ngpus, clear); | |
else if(0==strcmp(argv[2], "valid")) validate_attention_single(data, cfg, weights); | |
else if(0==strcmp(argv[2], "validmulti")) validate_attention_multi(data, cfg, weights); | |
} | |