Spaces:
Running
Running
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"}; | |
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; | |
void train_coco(char *cfgfile, char *weightfile) | |
{ | |
//char *train_images = "/home/pjreddie/data/voc/test/train.txt"; | |
//char *train_images = "/home/pjreddie/data/coco/train.txt"; | |
char *train_images = "data/coco.trainval.txt"; | |
//char *train_images = "data/bags.train.list"; | |
char *backup_directory = "/home/pjreddie/backup/"; | |
srand(time(0)); | |
char *base = basecfg(cfgfile); | |
printf("%s\n", base); | |
float avg_loss = -1; | |
network *net = load_network(cfgfile, weightfile, 0); | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
int imgs = net->batch*net->subdivisions; | |
int i = *net->seen/imgs; | |
data train, buffer; | |
layer l = net->layers[net->n - 1]; | |
int side = l.side; | |
int classes = l.classes; | |
float jitter = l.jitter; | |
list *plist = get_paths(train_images); | |
//int N = plist->size; | |
char **paths = (char **)list_to_array(plist); | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
args.paths = paths; | |
args.n = imgs; | |
args.m = plist->size; | |
args.classes = classes; | |
args.jitter = jitter; | |
args.num_boxes = side; | |
args.d = &buffer; | |
args.type = REGION_DATA; | |
args.angle = net->angle; | |
args.exposure = net->exposure; | |
args.saturation = net->saturation; | |
args.hue = net->hue; | |
pthread_t load_thread = load_data_in_thread(args); | |
clock_t time; | |
//while(i*imgs < N*120){ | |
while(get_current_batch(net) < net->max_batches){ | |
i += 1; | |
time=clock(); | |
pthread_join(load_thread, 0); | |
train = buffer; | |
load_thread = load_data_in_thread(args); | |
printf("Loaded: %lf seconds\n", sec(clock()-time)); | |
/* | |
image im = float_to_image(net->w, net->h, 3, train.X.vals[113]); | |
image copy = copy_image(im); | |
draw_coco(copy, train.y.vals[113], 7, "truth"); | |
cvWaitKey(0); | |
free_image(copy); | |
*/ | |
time=clock(); | |
float loss = train_network(net, train); | |
if (avg_loss < 0) avg_loss = loss; | |
avg_loss = avg_loss*.9 + loss*.1; | |
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); | |
if(i%1000==0 || (i < 1000 && i%100 == 0)){ | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); | |
save_weights(net, buff); | |
} | |
if(i%100==0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup", backup_directory, base); | |
save_weights(net, buff); | |
} | |
free_data(train); | |
} | |
char buff[256]; | |
sprintf(buff, "%s/%s_final.weights", backup_directory, base); | |
save_weights(net, buff); | |
} | |
static void print_cocos(FILE *fp, int image_id, detection *dets, int num_boxes, int classes, int w, int h) | |
{ | |
int i, j; | |
for(i = 0; i < num_boxes; ++i){ | |
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.; | |
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.; | |
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.; | |
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.; | |
if (xmin < 0) xmin = 0; | |
if (ymin < 0) ymin = 0; | |
if (xmax > w) xmax = w; | |
if (ymax > h) ymax = h; | |
float bx = xmin; | |
float by = ymin; | |
float bw = xmax - xmin; | |
float bh = ymax - ymin; | |
for(j = 0; j < classes; ++j){ | |
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]); | |
} | |
} | |
} | |
int get_coco_image_id(char *filename) | |
{ | |
char *p = strrchr(filename, '_'); | |
return atoi(p+1); | |
} | |
void validate_coco(char *cfg, char *weights) | |
{ | |
network *net = load_network(cfg, weights, 0); | |
set_batch_network(net, 1); | |
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
srand(time(0)); | |
char *base = "results/"; | |
list *plist = get_paths("data/coco_val_5k.list"); | |
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt"); | |
//list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); | |
char **paths = (char **)list_to_array(plist); | |
layer l = net->layers[net->n-1]; | |
int classes = l.classes; | |
char buff[1024]; | |
snprintf(buff, 1024, "%s/coco_results.json", base); | |
FILE *fp = fopen(buff, "w"); | |
fprintf(fp, "[\n"); | |
int m = plist->size; | |
int i=0; | |
int t; | |
float thresh = .01; | |
int nms = 1; | |
float iou_thresh = .5; | |
int nthreads = 8; | |
image *val = calloc(nthreads, sizeof(image)); | |
image *val_resized = calloc(nthreads, sizeof(image)); | |
image *buf = calloc(nthreads, sizeof(image)); | |
image *buf_resized = calloc(nthreads, sizeof(image)); | |
pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
args.type = IMAGE_DATA; | |
for(t = 0; t < nthreads; ++t){ | |
args.path = paths[i+t]; | |
args.im = &buf[t]; | |
args.resized = &buf_resized[t]; | |
thr[t] = load_data_in_thread(args); | |
} | |
time_t start = time(0); | |
for(i = nthreads; i < m+nthreads; i += nthreads){ | |
fprintf(stderr, "%d\n", i); | |
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ | |
pthread_join(thr[t], 0); | |
val[t] = buf[t]; | |
val_resized[t] = buf_resized[t]; | |
} | |
for(t = 0; t < nthreads && i+t < m; ++t){ | |
args.path = paths[i+t]; | |
args.im = &buf[t]; | |
args.resized = &buf_resized[t]; | |
thr[t] = load_data_in_thread(args); | |
} | |
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ | |
char *path = paths[i+t-nthreads]; | |
int image_id = get_coco_image_id(path); | |
float *X = val_resized[t].data; | |
network_predict(net, X); | |
int w = val[t].w; | |
int h = val[t].h; | |
int nboxes = 0; | |
detection *dets = get_network_boxes(net, w, h, thresh, 0, 0, 0, &nboxes); | |
if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh); | |
print_cocos(fp, image_id, dets, l.side*l.side*l.n, classes, w, h); | |
free_detections(dets, nboxes); | |
free_image(val[t]); | |
free_image(val_resized[t]); | |
} | |
} | |
fseek(fp, -2, SEEK_CUR); | |
fprintf(fp, "\n]\n"); | |
fclose(fp); | |
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); | |
} | |
void validate_coco_recall(char *cfgfile, char *weightfile) | |
{ | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
srand(time(0)); | |
char *base = "results/comp4_det_test_"; | |
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt"); | |
char **paths = (char **)list_to_array(plist); | |
layer l = net->layers[net->n-1]; | |
int classes = l.classes; | |
int side = l.side; | |
int j, k; | |
FILE **fps = calloc(classes, sizeof(FILE *)); | |
for(j = 0; j < classes; ++j){ | |
char buff[1024]; | |
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]); | |
fps[j] = fopen(buff, "w"); | |
} | |
int m = plist->size; | |
int i=0; | |
float thresh = .001; | |
int nms = 0; | |
float iou_thresh = .5; | |
int total = 0; | |
int correct = 0; | |
int proposals = 0; | |
float avg_iou = 0; | |
for(i = 0; i < m; ++i){ | |
char *path = paths[i]; | |
image orig = load_image_color(path, 0, 0); | |
image sized = resize_image(orig, net->w, net->h); | |
char *id = basecfg(path); | |
network_predict(net, sized.data); | |
int nboxes = 0; | |
detection *dets = get_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, &nboxes); | |
if (nms) do_nms_obj(dets, side*side*l.n, 1, nms); | |
char labelpath[4096]; | |
find_replace(path, "images", "labels", labelpath); | |
find_replace(labelpath, "JPEGImages", "labels", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
int num_labels = 0; | |
box_label *truth = read_boxes(labelpath, &num_labels); | |
for(k = 0; k < side*side*l.n; ++k){ | |
if(dets[k].objectness > thresh){ | |
++proposals; | |
} | |
} | |
for (j = 0; j < num_labels; ++j) { | |
++total; | |
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; | |
float best_iou = 0; | |
for(k = 0; k < side*side*l.n; ++k){ | |
float iou = box_iou(dets[k].bbox, t); | |
if(dets[k].objectness > thresh && iou > best_iou){ | |
best_iou = iou; | |
} | |
} | |
avg_iou += best_iou; | |
if(best_iou > iou_thresh){ | |
++correct; | |
} | |
} | |
free_detections(dets, nboxes); | |
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); | |
free(id); | |
free_image(orig); | |
free_image(sized); | |
} | |
} | |
void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh) | |
{ | |
image **alphabet = load_alphabet(); | |
network *net = load_network(cfgfile, weightfile, 0); | |
layer l = net->layers[net->n-1]; | |
set_batch_network(net, 1); | |
srand(2222222); | |
float nms = .4; | |
clock_t time; | |
char buff[256]; | |
char *input = buff; | |
while(1){ | |
if(filename){ | |
strncpy(input, filename, 256); | |
} else { | |
printf("Enter Image Path: "); | |
fflush(stdout); | |
input = fgets(input, 256, stdin); | |
if(!input) return; | |
strtok(input, "\n"); | |
} | |
image im = load_image_color(input,0,0); | |
image sized = resize_image(im, net->w, net->h); | |
float *X = sized.data; | |
time=clock(); | |
network_predict(net, X); | |
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); | |
int nboxes = 0; | |
detection *dets = get_network_boxes(net, 1, 1, thresh, 0, 0, 0, &nboxes); | |
if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms); | |
draw_detections(im, dets, l.side*l.side*l.n, thresh, coco_classes, alphabet, 80); | |
save_image(im, "prediction"); | |
show_image(im, "predictions", 0); | |
free_detections(dets, nboxes); | |
free_image(im); | |
free_image(sized); | |
if (filename) break; | |
} | |
} | |
void run_coco(int argc, char **argv) | |
{ | |
char *prefix = find_char_arg(argc, argv, "-prefix", 0); | |
float thresh = find_float_arg(argc, argv, "-thresh", .2); | |
int cam_index = find_int_arg(argc, argv, "-c", 0); | |
int frame_skip = find_int_arg(argc, argv, "-s", 0); | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *cfg = argv[3]; | |
char *weights = (argc > 4) ? argv[4] : 0; | |
char *filename = (argc > 5) ? argv[5]: 0; | |
int avg = find_int_arg(argc, argv, "-avg", 1); | |
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh); | |
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights); | |
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights); | |
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights); | |
else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, 80, frame_skip, prefix, avg, .5, 0,0,0,0); | |
} | |