Spaces:
Running
Running
static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; | |
void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) | |
{ | |
list *options = read_data_cfg(datacfg); | |
char *train_images = option_find_str(options, "train", "data/train.list"); | |
char *backup_directory = option_find_str(options, "backup", "/backup/"); | |
srand(time(0)); | |
char *base = basecfg(cfgfile); | |
printf("%s\n", base); | |
float avg_loss = -1; | |
network **nets = calloc(ngpus, sizeof(network)); | |
srand(time(0)); | |
int seed = rand(); | |
int i; | |
for(i = 0; i < ngpus; ++i){ | |
srand(seed); | |
cuda_set_device(gpus[i]); | |
nets[i] = load_network(cfgfile, weightfile, clear); | |
nets[i]->learning_rate *= ngpus; | |
} | |
srand(time(0)); | |
network *net = nets[0]; | |
int imgs = net->batch * net->subdivisions * ngpus; | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
data train, buffer; | |
layer l = net->layers[net->n - 1]; | |
int classes = l.classes; | |
float jitter = l.jitter; | |
list *plist = get_paths(train_images); | |
//int N = plist->size; | |
char **paths = (char **)list_to_array(plist); | |
load_args args = get_base_args(net); | |
args.coords = l.coords; | |
args.paths = paths; | |
args.n = imgs; | |
args.m = plist->size; | |
args.classes = classes; | |
args.jitter = jitter; | |
args.num_boxes = l.max_boxes; | |
args.d = &buffer; | |
args.type = DETECTION_DATA; | |
//args.type = INSTANCE_DATA; | |
args.threads = 64; | |
pthread_t load_thread = load_data(args); | |
double time; | |
int count = 0; | |
//while(i*imgs < N*120){ | |
while(get_current_batch(net) < net->max_batches){ | |
if(l.random && count++%10 == 0){ | |
printf("Resizing\n"); | |
int dim = (rand() % 10 + 10) * 32; | |
if (get_current_batch(net)+200 > net->max_batches) dim = 608; | |
//int dim = (rand() % 4 + 16) * 32; | |
printf("%d\n", dim); | |
args.w = dim; | |
args.h = dim; | |
pthread_join(load_thread, 0); | |
train = buffer; | |
free_data(train); | |
load_thread = load_data(args); | |
for(i = 0; i < ngpus; ++i){ | |
resize_network(nets[i], dim, dim); | |
} | |
net = nets[0]; | |
} | |
time=what_time_is_it_now(); | |
pthread_join(load_thread, 0); | |
train = buffer; | |
load_thread = load_data(args); | |
/* | |
int k; | |
for(k = 0; k < l.max_boxes; ++k){ | |
box b = float_to_box(train.y.vals[10] + 1 + k*5); | |
if(!b.x) break; | |
printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); | |
} | |
*/ | |
/* | |
int zz; | |
for(zz = 0; zz < train.X.cols; ++zz){ | |
image im = float_to_image(net->w, net->h, 3, train.X.vals[zz]); | |
int k; | |
for(k = 0; k < l.max_boxes; ++k){ | |
box b = float_to_box(train.y.vals[zz] + k*5, 1); | |
printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); | |
draw_bbox(im, b, 1, 1,0,0); | |
} | |
show_image(im, "truth11"); | |
cvWaitKey(0); | |
save_image(im, "truth11"); | |
} | |
*/ | |
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time); | |
time=what_time_is_it_now(); | |
float loss = 0; | |
if(ngpus == 1){ | |
loss = train_network(net, train); | |
} else { | |
loss = train_networks(nets, ngpus, train, 4); | |
} | |
loss = train_network(net, train); | |
if (avg_loss < 0) avg_loss = loss; | |
avg_loss = avg_loss*.9 + loss*.1; | |
i = get_current_batch(net); | |
printf("%ld: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, i*imgs); | |
if(i%100==0){ | |
if(ngpus != 1) sync_nets(nets, ngpus, 0); | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup", backup_directory, base); | |
save_weights(net, buff); | |
} | |
if(i%10000==0 || (i < 1000 && i%100 == 0)){ | |
if(ngpus != 1) sync_nets(nets, ngpus, 0); | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); | |
save_weights(net, buff); | |
} | |
free_data(train); | |
} | |
if(ngpus != 1) sync_nets(nets, ngpus, 0); | |
char buff[256]; | |
sprintf(buff, "%s/%s_final.weights", backup_directory, base); | |
save_weights(net, buff); | |
} | |
static int get_coco_image_id(char *filename) | |
{ | |
char *p = strrchr(filename, '/'); | |
char *c = strrchr(filename, '_'); | |
if(c) p = c; | |
return atoi(p+1); | |
} | |
static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) | |
{ | |
int i, j; | |
int image_id = get_coco_image_id(image_path); | |
for(i = 0; i < num_boxes; ++i){ | |
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.; | |
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.; | |
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.; | |
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.; | |
if (xmin < 0) xmin = 0; | |
if (ymin < 0) ymin = 0; | |
if (xmax > w) xmax = w; | |
if (ymax > h) ymax = h; | |
float bx = xmin; | |
float by = ymin; | |
float bw = xmax - xmin; | |
float bh = ymax - ymin; | |
for(j = 0; j < classes; ++j){ | |
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]); | |
} | |
} | |
} | |
void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h) | |
{ | |
int i, j; | |
for(i = 0; i < total; ++i){ | |
float xmin = dets[i].bbox.x - dets[i].bbox.w/2. + 1; | |
float xmax = dets[i].bbox.x + dets[i].bbox.w/2. + 1; | |
float ymin = dets[i].bbox.y - dets[i].bbox.h/2. + 1; | |
float ymax = dets[i].bbox.y + dets[i].bbox.h/2. + 1; | |
if (xmin < 1) xmin = 1; | |
if (ymin < 1) ymin = 1; | |
if (xmax > w) xmax = w; | |
if (ymax > h) ymax = h; | |
for(j = 0; j < classes; ++j){ | |
if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j], | |
xmin, ymin, xmax, ymax); | |
} | |
} | |
} | |
void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h) | |
{ | |
int i, j; | |
for(i = 0; i < total; ++i){ | |
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.; | |
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.; | |
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.; | |
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.; | |
if (xmin < 0) xmin = 0; | |
if (ymin < 0) ymin = 0; | |
if (xmax > w) xmax = w; | |
if (ymax > h) ymax = h; | |
for(j = 0; j < classes; ++j){ | |
int class = j; | |
if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, dets[i].prob[class], | |
xmin, ymin, xmax, ymax); | |
} | |
} | |
} | |
void validate_detector_flip(char *datacfg, char *cfgfile, char *weightfile, char *outfile) | |
{ | |
int j; | |
list *options = read_data_cfg(datacfg); | |
char *valid_images = option_find_str(options, "valid", "data/train.list"); | |
char *name_list = option_find_str(options, "names", "data/names.list"); | |
char *prefix = option_find_str(options, "results", "results"); | |
char **names = get_labels(name_list); | |
char *mapf = option_find_str(options, "map", 0); | |
int *map = 0; | |
if (mapf) map = read_map(mapf); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 2); | |
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
srand(time(0)); | |
list *plist = get_paths(valid_images); | |
char **paths = (char **)list_to_array(plist); | |
layer l = net->layers[net->n-1]; | |
int classes = l.classes; | |
char buff[1024]; | |
char *type = option_find_str(options, "eval", "voc"); | |
FILE *fp = 0; | |
FILE **fps = 0; | |
int coco = 0; | |
int imagenet = 0; | |
if(0==strcmp(type, "coco")){ | |
if(!outfile) outfile = "coco_results"; | |
snprintf(buff, 1024, "%s/%s.json", prefix, outfile); | |
fp = fopen(buff, "w"); | |
fprintf(fp, "[\n"); | |
coco = 1; | |
} else if(0==strcmp(type, "imagenet")){ | |
if(!outfile) outfile = "imagenet-detection"; | |
snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); | |
fp = fopen(buff, "w"); | |
imagenet = 1; | |
classes = 200; | |
} else { | |
if(!outfile) outfile = "comp4_det_test_"; | |
fps = calloc(classes, sizeof(FILE *)); | |
for(j = 0; j < classes; ++j){ | |
snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); | |
fps[j] = fopen(buff, "w"); | |
} | |
} | |
int m = plist->size; | |
int i=0; | |
int t; | |
float thresh = .005; | |
float nms = .45; | |
int nthreads = 4; | |
image *val = calloc(nthreads, sizeof(image)); | |
image *val_resized = calloc(nthreads, sizeof(image)); | |
image *buf = calloc(nthreads, sizeof(image)); | |
image *buf_resized = calloc(nthreads, sizeof(image)); | |
pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); | |
image input = make_image(net->w, net->h, net->c*2); | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
//args.type = IMAGE_DATA; | |
args.type = LETTERBOX_DATA; | |
for(t = 0; t < nthreads; ++t){ | |
args.path = paths[i+t]; | |
args.im = &buf[t]; | |
args.resized = &buf_resized[t]; | |
thr[t] = load_data_in_thread(args); | |
} | |
double start = what_time_is_it_now(); | |
for(i = nthreads; i < m+nthreads; i += nthreads){ | |
fprintf(stderr, "%d\n", i); | |
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ | |
pthread_join(thr[t], 0); | |
val[t] = buf[t]; | |
val_resized[t] = buf_resized[t]; | |
} | |
for(t = 0; t < nthreads && i+t < m; ++t){ | |
args.path = paths[i+t]; | |
args.im = &buf[t]; | |
args.resized = &buf_resized[t]; | |
thr[t] = load_data_in_thread(args); | |
} | |
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ | |
char *path = paths[i+t-nthreads]; | |
char *id = basecfg(path); | |
copy_cpu(net->w*net->h*net->c, val_resized[t].data, 1, input.data, 1); | |
flip_image(val_resized[t]); | |
copy_cpu(net->w*net->h*net->c, val_resized[t].data, 1, input.data + net->w*net->h*net->c, 1); | |
network_predict(net, input.data); | |
int w = val[t].w; | |
int h = val[t].h; | |
int num = 0; | |
detection *dets = get_network_boxes(net, w, h, thresh, .5, map, 0, &num); | |
if (nms) do_nms_sort(dets, num, classes, nms); | |
if (coco){ | |
print_cocos(fp, path, dets, num, classes, w, h); | |
} else if (imagenet){ | |
print_imagenet_detections(fp, i+t-nthreads+1, dets, num, classes, w, h); | |
} else { | |
print_detector_detections(fps, id, dets, num, classes, w, h); | |
} | |
free_detections(dets, num); | |
free(id); | |
free_image(val[t]); | |
free_image(val_resized[t]); | |
} | |
} | |
for(j = 0; j < classes; ++j){ | |
if(fps) fclose(fps[j]); | |
} | |
if(coco){ | |
fseek(fp, -2, SEEK_CUR); | |
fprintf(fp, "\n]\n"); | |
fclose(fp); | |
} | |
fprintf(stderr, "Total Detection Time: %f Seconds\n", what_time_is_it_now() - start); | |
} | |
void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile) | |
{ | |
int j; | |
list *options = read_data_cfg(datacfg); | |
char *valid_images = option_find_str(options, "valid", "data/train.list"); | |
char *name_list = option_find_str(options, "names", "data/names.list"); | |
char *prefix = option_find_str(options, "results", "results"); | |
char **names = get_labels(name_list); | |
char *mapf = option_find_str(options, "map", 0); | |
int *map = 0; | |
if (mapf) map = read_map(mapf); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
srand(time(0)); | |
list *plist = get_paths(valid_images); | |
char **paths = (char **)list_to_array(plist); | |
layer l = net->layers[net->n-1]; | |
int classes = l.classes; | |
char buff[1024]; | |
char *type = option_find_str(options, "eval", "voc"); | |
FILE *fp = 0; | |
FILE **fps = 0; | |
int coco = 0; | |
int imagenet = 0; | |
if(0==strcmp(type, "coco")){ | |
if(!outfile) outfile = "coco_results"; | |
snprintf(buff, 1024, "%s/%s.json", prefix, outfile); | |
fp = fopen(buff, "w"); | |
fprintf(fp, "[\n"); | |
coco = 1; | |
} else if(0==strcmp(type, "imagenet")){ | |
if(!outfile) outfile = "imagenet-detection"; | |
snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); | |
fp = fopen(buff, "w"); | |
imagenet = 1; | |
classes = 200; | |
} else { | |
if(!outfile) outfile = "comp4_det_test_"; | |
fps = calloc(classes, sizeof(FILE *)); | |
for(j = 0; j < classes; ++j){ | |
snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); | |
fps[j] = fopen(buff, "w"); | |
} | |
} | |
int m = plist->size; | |
int i=0; | |
int t; | |
float thresh = .005; | |
float nms = .45; | |
int nthreads = 4; | |
image *val = calloc(nthreads, sizeof(image)); | |
image *val_resized = calloc(nthreads, sizeof(image)); | |
image *buf = calloc(nthreads, sizeof(image)); | |
image *buf_resized = calloc(nthreads, sizeof(image)); | |
pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
//args.type = IMAGE_DATA; | |
args.type = LETTERBOX_DATA; | |
for(t = 0; t < nthreads; ++t){ | |
args.path = paths[i+t]; | |
args.im = &buf[t]; | |
args.resized = &buf_resized[t]; | |
thr[t] = load_data_in_thread(args); | |
} | |
double start = what_time_is_it_now(); | |
for(i = nthreads; i < m+nthreads; i += nthreads){ | |
fprintf(stderr, "%d\n", i); | |
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ | |
pthread_join(thr[t], 0); | |
val[t] = buf[t]; | |
val_resized[t] = buf_resized[t]; | |
} | |
for(t = 0; t < nthreads && i+t < m; ++t){ | |
args.path = paths[i+t]; | |
args.im = &buf[t]; | |
args.resized = &buf_resized[t]; | |
thr[t] = load_data_in_thread(args); | |
} | |
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){ | |
char *path = paths[i+t-nthreads]; | |
char *id = basecfg(path); | |
float *X = val_resized[t].data; | |
network_predict(net, X); | |
int w = val[t].w; | |
int h = val[t].h; | |
int nboxes = 0; | |
detection *dets = get_network_boxes(net, w, h, thresh, .5, map, 0, &nboxes); | |
if (nms) do_nms_sort(dets, nboxes, classes, nms); | |
if (coco){ | |
print_cocos(fp, path, dets, nboxes, classes, w, h); | |
} else if (imagenet){ | |
print_imagenet_detections(fp, i+t-nthreads+1, dets, nboxes, classes, w, h); | |
} else { | |
print_detector_detections(fps, id, dets, nboxes, classes, w, h); | |
} | |
free_detections(dets, nboxes); | |
free(id); | |
free_image(val[t]); | |
free_image(val_resized[t]); | |
} | |
} | |
for(j = 0; j < classes; ++j){ | |
if(fps) fclose(fps[j]); | |
} | |
if(coco){ | |
fseek(fp, -2, SEEK_CUR); | |
fprintf(fp, "\n]\n"); | |
fclose(fp); | |
} | |
fprintf(stderr, "Total Detection Time: %f Seconds\n", what_time_is_it_now() - start); | |
} | |
void validate_detector_recall(char *cfgfile, char *weightfile) | |
{ | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
srand(time(0)); | |
list *plist = get_paths("data/coco_val_5k.list"); | |
char **paths = (char **)list_to_array(plist); | |
layer l = net->layers[net->n-1]; | |
int j, k; | |
int m = plist->size; | |
int i=0; | |
float thresh = .001; | |
float iou_thresh = .5; | |
float nms = .4; | |
int total = 0; | |
int correct = 0; | |
int proposals = 0; | |
float avg_iou = 0; | |
for(i = 0; i < m; ++i){ | |
char *path = paths[i]; | |
image orig = load_image_color(path, 0, 0); | |
image sized = resize_image(orig, net->w, net->h); | |
char *id = basecfg(path); | |
network_predict(net, sized.data); | |
int nboxes = 0; | |
detection *dets = get_network_boxes(net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes); | |
if (nms) do_nms_obj(dets, nboxes, 1, nms); | |
char labelpath[4096]; | |
find_replace(path, "images", "labels", labelpath); | |
find_replace(labelpath, "JPEGImages", "labels", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
int num_labels = 0; | |
box_label *truth = read_boxes(labelpath, &num_labels); | |
for(k = 0; k < nboxes; ++k){ | |
if(dets[k].objectness > thresh){ | |
++proposals; | |
} | |
} | |
for (j = 0; j < num_labels; ++j) { | |
++total; | |
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; | |
float best_iou = 0; | |
for(k = 0; k < l.w*l.h*l.n; ++k){ | |
float iou = box_iou(dets[k].bbox, t); | |
if(dets[k].objectness > thresh && iou > best_iou){ | |
best_iou = iou; | |
} | |
} | |
avg_iou += best_iou; | |
if(best_iou > iou_thresh){ | |
++correct; | |
} | |
} | |
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total); | |
free(id); | |
free_image(orig); | |
free_image(sized); | |
} | |
} | |
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen) | |
{ | |
list *options = read_data_cfg(datacfg); | |
char *name_list = option_find_str(options, "names", "data/names.list"); | |
char **names = get_labels(name_list); | |
image **alphabet = load_alphabet(); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
double time; | |
char buff[256]; | |
char *input = buff; | |
float nms=.45; | |
while(1){ | |
if(filename){ | |
strncpy(input, filename, 256); | |
} else { | |
printf("Enter Image Path: "); | |
fflush(stdout); | |
input = fgets(input, 256, stdin); | |
if(!input) return; | |
strtok(input, "\n"); | |
} | |
image im = load_image_color(input,0,0); | |
image sized = letterbox_image(im, net->w, net->h); | |
//image sized = resize_image(im, net->w, net->h); | |
//image sized2 = resize_max(im, net->w); | |
//image sized = crop_image(sized2, -((net->w - sized2.w)/2), -((net->h - sized2.h)/2), net->w, net->h); | |
//resize_network(net, sized.w, sized.h); | |
layer l = net->layers[net->n-1]; | |
float *X = sized.data; | |
time=what_time_is_it_now(); | |
network_predict(net, X); | |
printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time); | |
int nboxes = 0; | |
detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes); | |
//printf("%d\n", nboxes); | |
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms); | |
if (nms) do_nms_sort(dets, nboxes, l.classes, nms); | |
draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes); | |
free_detections(dets, nboxes); | |
if(outfile){ | |
save_image(im, outfile); | |
} | |
else{ | |
save_image(im, "predictions"); | |
make_window("predictions", 512, 512, 0); | |
show_image(im, "predictions", 0); | |
} | |
free_image(im); | |
free_image(sized); | |
if (filename) break; | |
} | |
} | |
/* | |
void censor_detector(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename, int class, float thresh, int skip) | |
{ | |
#ifdef OPENCV | |
char *base = basecfg(cfgfile); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
CvCapture * cap; | |
int w = 1280; | |
int h = 720; | |
if(filename){ | |
cap = cvCaptureFromFile(filename); | |
}else{ | |
cap = cvCaptureFromCAM(cam_index); | |
} | |
if(w){ | |
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_WIDTH, w); | |
} | |
if(h){ | |
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_HEIGHT, h); | |
} | |
if(!cap) error("Couldn't connect to webcam.\n"); | |
cvNamedWindow(base, CV_WINDOW_NORMAL); | |
cvResizeWindow(base, 512, 512); | |
float fps = 0; | |
int i; | |
float nms = .45; | |
while(1){ | |
image in = get_image_from_stream(cap); | |
//image in_s = resize_image(in, net->w, net->h); | |
image in_s = letterbox_image(in, net->w, net->h); | |
layer l = net->layers[net->n-1]; | |
float *X = in_s.data; | |
network_predict(net, X); | |
int nboxes = 0; | |
detection *dets = get_network_boxes(net, in.w, in.h, thresh, 0, 0, 0, &nboxes); | |
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms); | |
if (nms) do_nms_sort(dets, nboxes, l.classes, nms); | |
for(i = 0; i < nboxes; ++i){ | |
if(dets[i].prob[class] > thresh){ | |
box b = dets[i].bbox; | |
int left = b.x-b.w/2.; | |
int top = b.y-b.h/2.; | |
censor_image(in, left, top, b.w, b.h); | |
} | |
} | |
show_image(in, base); | |
cvWaitKey(10); | |
free_detections(dets, nboxes); | |
free_image(in_s); | |
free_image(in); | |
float curr = 0; | |
fps = .9*fps + .1*curr; | |
for(i = 0; i < skip; ++i){ | |
image in = get_image_from_stream(cap); | |
free_image(in); | |
} | |
} | |
#endif | |
} | |
void extract_detector(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename, int class, float thresh, int skip) | |
{ | |
#ifdef OPENCV | |
char *base = basecfg(cfgfile); | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
CvCapture * cap; | |
int w = 1280; | |
int h = 720; | |
if(filename){ | |
cap = cvCaptureFromFile(filename); | |
}else{ | |
cap = cvCaptureFromCAM(cam_index); | |
} | |
if(w){ | |
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_WIDTH, w); | |
} | |
if(h){ | |
cvSetCaptureProperty(cap, CV_CAP_PROP_FRAME_HEIGHT, h); | |
} | |
if(!cap) error("Couldn't connect to webcam.\n"); | |
cvNamedWindow(base, CV_WINDOW_NORMAL); | |
cvResizeWindow(base, 512, 512); | |
float fps = 0; | |
int i; | |
int count = 0; | |
float nms = .45; | |
while(1){ | |
image in = get_image_from_stream(cap); | |
//image in_s = resize_image(in, net->w, net->h); | |
image in_s = letterbox_image(in, net->w, net->h); | |
layer l = net->layers[net->n-1]; | |
show_image(in, base); | |
int nboxes = 0; | |
float *X = in_s.data; | |
network_predict(net, X); | |
detection *dets = get_network_boxes(net, in.w, in.h, thresh, 0, 0, 1, &nboxes); | |
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms); | |
if (nms) do_nms_sort(dets, nboxes, l.classes, nms); | |
for(i = 0; i < nboxes; ++i){ | |
if(dets[i].prob[class] > thresh){ | |
box b = dets[i].bbox; | |
int size = b.w*in.w > b.h*in.h ? b.w*in.w : b.h*in.h; | |
int dx = b.x*in.w-size/2.; | |
int dy = b.y*in.h-size/2.; | |
image bim = crop_image(in, dx, dy, size, size); | |
char buff[2048]; | |
sprintf(buff, "results/extract/%07d", count); | |
++count; | |
save_image(bim, buff); | |
free_image(bim); | |
} | |
} | |
free_detections(dets, nboxes); | |
free_image(in_s); | |
free_image(in); | |
float curr = 0; | |
fps = .9*fps + .1*curr; | |
for(i = 0; i < skip; ++i){ | |
image in = get_image_from_stream(cap); | |
free_image(in); | |
} | |
} | |
#endif | |
} | |
*/ | |
/* | |
void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, detection *dets) | |
{ | |
network_predict_image(net, im); | |
layer l = net->layers[net->n-1]; | |
int nboxes = num_boxes(net); | |
fill_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 0, dets); | |
if (nms) do_nms_sort(dets, nboxes, l.classes, nms); | |
} | |
*/ | |
void run_detector(int argc, char **argv) | |
{ | |
char *prefix = find_char_arg(argc, argv, "-prefix", 0); | |
float thresh = find_float_arg(argc, argv, "-thresh", .5); | |
float hier_thresh = find_float_arg(argc, argv, "-hier", .5); | |
int cam_index = find_int_arg(argc, argv, "-c", 0); | |
int frame_skip = find_int_arg(argc, argv, "-s", 0); | |
int avg = find_int_arg(argc, argv, "-avg", 3); | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); | |
char *outfile = find_char_arg(argc, argv, "-out", 0); | |
int *gpus = 0; | |
int gpu = 0; | |
int ngpus = 0; | |
if(gpu_list){ | |
printf("%s\n", gpu_list); | |
int len = strlen(gpu_list); | |
ngpus = 1; | |
int i; | |
for(i = 0; i < len; ++i){ | |
if (gpu_list[i] == ',') ++ngpus; | |
} | |
gpus = calloc(ngpus, sizeof(int)); | |
for(i = 0; i < ngpus; ++i){ | |
gpus[i] = atoi(gpu_list); | |
gpu_list = strchr(gpu_list, ',')+1; | |
} | |
} else { | |
gpu = gpu_index; | |
gpus = &gpu; | |
ngpus = 1; | |
} | |
int clear = find_arg(argc, argv, "-clear"); | |
int fullscreen = find_arg(argc, argv, "-fullscreen"); | |
int width = find_int_arg(argc, argv, "-w", 0); | |
int height = find_int_arg(argc, argv, "-h", 0); | |
int fps = find_int_arg(argc, argv, "-fps", 0); | |
//int class = find_int_arg(argc, argv, "-class", 0); | |
char *datacfg = argv[3]; | |
char *cfg = argv[4]; | |
char *weights = (argc > 5) ? argv[5] : 0; | |
char *filename = (argc > 6) ? argv[6]: 0; | |
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, outfile, fullscreen); | |
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); | |
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); | |
else if(0==strcmp(argv[2], "valid2")) validate_detector_flip(datacfg, cfg, weights, outfile); | |
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(cfg, weights); | |
else if(0==strcmp(argv[2], "demo")) { | |
list *options = read_data_cfg(datacfg); | |
int classes = option_find_int(options, "classes", 20); | |
char *name_list = option_find_str(options, "names", "data/names.list"); | |
char **names = get_labels(name_list); | |
demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, avg, hier_thresh, width, height, fps, fullscreen); | |
} | |
//else if(0==strcmp(argv[2], "extract")) extract_detector(datacfg, cfg, weights, cam_index, filename, class, thresh, frame_skip); | |
//else if(0==strcmp(argv[2], "censor")) censor_detector(datacfg, cfg, weights, cam_index, filename, class, thresh, frame_skip); | |
} | |