Spaces:
Running
Running
// ./darknet nightmare cfg/extractor.recon.cfg ~/trained/yolo-coco.conv frame6.png -reconstruct -iters 500 -i 3 -lambda .1 -rate .01 -smooth 2 | |
float abs_mean(float *x, int n) | |
{ | |
int i; | |
float sum = 0; | |
for (i = 0; i < n; ++i){ | |
sum += fabs(x[i]); | |
} | |
return sum/n; | |
} | |
void calculate_loss(float *output, float *delta, int n, float thresh) | |
{ | |
int i; | |
float mean = mean_array(output, n); | |
float var = variance_array(output, n); | |
for(i = 0; i < n; ++i){ | |
if(delta[i] > mean + thresh*sqrt(var)) delta[i] = output[i]; | |
else delta[i] = 0; | |
} | |
} | |
void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm) | |
{ | |
//scale_image(orig, 2); | |
//translate_image(orig, -1); | |
net->n = max_layer + 1; | |
int dx = rand()%16 - 8; | |
int dy = rand()%16 - 8; | |
int flip = rand()%2; | |
image crop = crop_image(orig, dx, dy, orig.w, orig.h); | |
image im = resize_image(crop, (int)(orig.w * scale), (int)(orig.h * scale)); | |
if(flip) flip_image(im); | |
resize_network(net, im.w, im.h); | |
layer last = net->layers[net->n-1]; | |
//net->layers[net->n - 1].activation = LINEAR; | |
image delta = make_image(im.w, im.h, im.c); | |
net->delta_gpu = cuda_make_array(delta.data, im.w*im.h*im.c); | |
copy_cpu(net->inputs, im.data, 1, net->input, 1); | |
forward_network_gpu(net); | |
copy_gpu(last.outputs, last.output_gpu, 1, last.delta_gpu, 1); | |
cuda_pull_array(last.delta_gpu, last.delta, last.outputs); | |
calculate_loss(last.delta, last.delta, last.outputs, thresh); | |
cuda_push_array(last.delta_gpu, last.delta, last.outputs); | |
backward_network_gpu(net); | |
cuda_pull_array(net->delta_gpu, delta.data, im.w*im.h*im.c); | |
cuda_free(net->delta_gpu); | |
net->delta_gpu = 0; | |
printf("\nnet: %d %d %d im: %d %d %d\n", net->w, net->h, net->inputs, im.w, im.h, im.c); | |
copy_cpu(net->inputs, im.data, 1, net->input, 1); | |
net->delta = delta.data; | |
forward_network(net); | |
copy_cpu(last.outputs, last.output, 1, last.delta, 1); | |
calculate_loss(last.output, last.delta, last.outputs, thresh); | |
backward_network(net); | |
if(flip) flip_image(delta); | |
//normalize_array(delta.data, delta.w*delta.h*delta.c); | |
image resized = resize_image(delta, orig.w, orig.h); | |
image out = crop_image(resized, -dx, -dy, orig.w, orig.h); | |
/* | |
image g = grayscale_image(out); | |
free_image(out); | |
out = g; | |
*/ | |
//rate = rate / abs_mean(out.data, out.w*out.h*out.c); | |
image gray = make_image(out.w, out.h, out.c); | |
fill_image(gray, .5); | |
axpy_cpu(orig.w*orig.h*orig.c, -1, orig.data, 1, gray.data, 1); | |
axpy_cpu(orig.w*orig.h*orig.c, .1, gray.data, 1, out.data, 1); | |
if(norm) normalize_array(out.data, out.w*out.h*out.c); | |
axpy_cpu(orig.w*orig.h*orig.c, rate, out.data, 1, orig.data, 1); | |
/* | |
normalize_array(orig.data, orig.w*orig.h*orig.c); | |
scale_image(orig, sqrt(var)); | |
translate_image(orig, mean); | |
*/ | |
//translate_image(orig, 1); | |
//scale_image(orig, .5); | |
//normalize_image(orig); | |
constrain_image(orig); | |
free_image(crop); | |
free_image(im); | |
free_image(delta); | |
free_image(resized); | |
free_image(out); | |
} | |
void smooth(image recon, image update, float lambda, int num) | |
{ | |
int i, j, k; | |
int ii, jj; | |
for(k = 0; k < recon.c; ++k){ | |
for(j = 0; j < recon.h; ++j){ | |
for(i = 0; i < recon.w; ++i){ | |
int out_index = i + recon.w*(j + recon.h*k); | |
for(jj = j-num; jj <= j + num && jj < recon.h; ++jj){ | |
if (jj < 0) continue; | |
for(ii = i-num; ii <= i + num && ii < recon.w; ++ii){ | |
if (ii < 0) continue; | |
int in_index = ii + recon.w*(jj + recon.h*k); | |
update.data[out_index] += lambda * (recon.data[in_index] - recon.data[out_index]); | |
} | |
} | |
} | |
} | |
} | |
} | |
void reconstruct_picture(network *net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters) | |
{ | |
int iter = 0; | |
for (iter = 0; iter < iters; ++iter) { | |
image delta = make_image(recon.w, recon.h, recon.c); | |
layer l = get_network_output_layer(net); | |
cuda_push_array(net->input_gpu, recon.data, recon.w*recon.h*recon.c); | |
//cuda_push_array(net->truth_gpu, features, net->truths); | |
net->delta_gpu = cuda_make_array(delta.data, delta.w*delta.h*delta.c); | |
forward_network_gpu(net); | |
cuda_push_array(l.delta_gpu, features, l.outputs); | |
axpy_gpu(l.outputs, -1, l.output_gpu, 1, l.delta_gpu, 1); | |
backward_network_gpu(net); | |
cuda_pull_array(net->delta_gpu, delta.data, delta.w*delta.h*delta.c); | |
cuda_free(net->delta_gpu); | |
net->input = recon.data; | |
net->delta = delta.data; | |
net->truth = features; | |
forward_network(net); | |
backward_network(net); | |
//normalize_array(delta.data, delta.w*delta.h*delta.c); | |
axpy_cpu(recon.w*recon.h*recon.c, 1, delta.data, 1, update.data, 1); | |
//smooth(recon, update, lambda, smooth_size); | |
axpy_cpu(recon.w*recon.h*recon.c, rate, update.data, 1, recon.data, 1); | |
scal_cpu(recon.w*recon.h*recon.c, momentum, update.data, 1); | |
float mag = mag_array(delta.data, recon.w*recon.h*recon.c); | |
printf("mag: %f\n", mag); | |
//scal_cpu(recon.w*recon.h*recon.c, 600/mag, recon.data, 1); | |
constrain_image(recon); | |
free_image(delta); | |
} | |
} | |
/* | |
void run_lsd(int argc, char **argv) | |
{ | |
srand(0); | |
if(argc < 3){ | |
fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [options! (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *cfg = argv[2]; | |
char *weights = argv[3]; | |
char *input = argv[4]; | |
int norm = find_int_arg(argc, argv, "-norm", 1); | |
int rounds = find_int_arg(argc, argv, "-rounds", 1); | |
int iters = find_int_arg(argc, argv, "-iters", 10); | |
float rate = find_float_arg(argc, argv, "-rate", .04); | |
float momentum = find_float_arg(argc, argv, "-momentum", .9); | |
float lambda = find_float_arg(argc, argv, "-lambda", .01); | |
char *prefix = find_char_arg(argc, argv, "-prefix", 0); | |
int reconstruct = find_arg(argc, argv, "-reconstruct"); | |
int smooth_size = find_int_arg(argc, argv, "-smooth", 1); | |
network net = parse_network_cfg(cfg); | |
load_weights(&net, weights); | |
char *cfgbase = basecfg(cfg); | |
char *imbase = basecfg(input); | |
set_batch_network(&net, 1); | |
image im = load_image_color(input, 0, 0); | |
float *features = 0; | |
image update; | |
if (reconstruct){ | |
im = letterbox_image(im, net->w, net->h); | |
int zz = 0; | |
network_predict(net, im.data); | |
image out_im = get_network_image(net); | |
image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz); | |
//flip_image(crop); | |
image f_im = resize_image(crop, out_im.w, out_im.h); | |
free_image(crop); | |
printf("%d features\n", out_im.w*out_im.h*out_im.c); | |
im = resize_image(im, im.w, im.h); | |
f_im = resize_image(f_im, f_im.w, f_im.h); | |
features = f_im.data; | |
int i; | |
for(i = 0; i < 14*14*512; ++i){ | |
features[i] += rand_uniform(-.19, .19); | |
} | |
free_image(im); | |
im = make_random_image(im.w, im.h, im.c); | |
update = make_image(im.w, im.h, im.c); | |
} | |
int e; | |
int n; | |
for(e = 0; e < rounds; ++e){ | |
fprintf(stderr, "Iteration: "); | |
fflush(stderr); | |
for(n = 0; n < iters; ++n){ | |
fprintf(stderr, "%d, ", n); | |
fflush(stderr); | |
if(reconstruct){ | |
reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1); | |
//if ((n+1)%30 == 0) rate *= .5; | |
show_image(im, "reconstruction"); | |
#ifdef OPENCV | |
cvWaitKey(10); | |
#endif | |
}else{ | |
int layer = max_layer + rand()%range - range/2; | |
int octave = rand()%octaves; | |
optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm); | |
} | |
} | |
fprintf(stderr, "done\n"); | |
char buff[256]; | |
if (prefix){ | |
sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e); | |
}else{ | |
sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e); | |
} | |
printf("%d %s\n", e, buff); | |
save_image(im, buff); | |
//show_image(im, buff); | |
//cvWaitKey(0); | |
if(rotate){ | |
image rot = rotate_image(im, rotate); | |
free_image(im); | |
im = rot; | |
} | |
image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom); | |
image resized = resize_image(crop, im.w, im.h); | |
free_image(im); | |
free_image(crop); | |
im = resized; | |
} | |
} | |
*/ | |
void run_nightmare(int argc, char **argv) | |
{ | |
srand(0); | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [cfg] [weights] [image] [layer] [options! (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
char *cfg = argv[2]; | |
char *weights = argv[3]; | |
char *input = argv[4]; | |
int max_layer = atoi(argv[5]); | |
int range = find_int_arg(argc, argv, "-range", 1); | |
int norm = find_int_arg(argc, argv, "-norm", 1); | |
int rounds = find_int_arg(argc, argv, "-rounds", 1); | |
int iters = find_int_arg(argc, argv, "-iters", 10); | |
int octaves = find_int_arg(argc, argv, "-octaves", 4); | |
float zoom = find_float_arg(argc, argv, "-zoom", 1.); | |
float rate = find_float_arg(argc, argv, "-rate", .04); | |
float thresh = find_float_arg(argc, argv, "-thresh", 1.); | |
float rotate = find_float_arg(argc, argv, "-rotate", 0); | |
float momentum = find_float_arg(argc, argv, "-momentum", .9); | |
float lambda = find_float_arg(argc, argv, "-lambda", .01); | |
char *prefix = find_char_arg(argc, argv, "-prefix", 0); | |
int reconstruct = find_arg(argc, argv, "-reconstruct"); | |
int smooth_size = find_int_arg(argc, argv, "-smooth", 1); | |
network *net = load_network(cfg, weights, 0); | |
char *cfgbase = basecfg(cfg); | |
char *imbase = basecfg(input); | |
set_batch_network(net, 1); | |
image im = load_image_color(input, 0, 0); | |
if(0){ | |
float scale = 1; | |
if(im.w > 512 || im.h > 512){ | |
if(im.w > im.h) scale = 512.0/im.w; | |
else scale = 512.0/im.h; | |
} | |
image resized = resize_image(im, scale*im.w, scale*im.h); | |
free_image(im); | |
im = resized; | |
} | |
//im = letterbox_image(im, net->w, net->h); | |
float *features = 0; | |
image update; | |
if (reconstruct){ | |
net->n = max_layer; | |
im = letterbox_image(im, net->w, net->h); | |
//resize_network(&net, im.w, im.h); | |
network_predict(net, im.data); | |
if(net->layers[net->n-1].type == REGION){ | |
printf("region!\n"); | |
zero_objectness(net->layers[net->n-1]); | |
} | |
image out_im = copy_image(get_network_image(net)); | |
/* | |
image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz); | |
//flip_image(crop); | |
image f_im = resize_image(crop, out_im.w, out_im.h); | |
free_image(crop); | |
*/ | |
printf("%d features\n", out_im.w*out_im.h*out_im.c); | |
features = out_im.data; | |
/* | |
int i; | |
for(i = 0; i < 14*14*512; ++i){ | |
//features[i] += rand_uniform(-.19, .19); | |
} | |
free_image(im); | |
im = make_random_image(im.w, im.h, im.c); | |
*/ | |
update = make_image(im.w, im.h, im.c); | |
} | |
int e; | |
int n; | |
for(e = 0; e < rounds; ++e){ | |
fprintf(stderr, "Iteration: "); | |
fflush(stderr); | |
for(n = 0; n < iters; ++n){ | |
fprintf(stderr, "%d, ", n); | |
fflush(stderr); | |
if(reconstruct){ | |
reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1); | |
//if ((n+1)%30 == 0) rate *= .5; | |
show_image(im, "reconstruction", 10); | |
}else{ | |
int layer = max_layer + rand()%range - range/2; | |
int octave = rand()%octaves; | |
optimize_picture(net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm); | |
} | |
} | |
fprintf(stderr, "done\n"); | |
if(0){ | |
image g = grayscale_image(im); | |
free_image(im); | |
im = g; | |
} | |
char buff[256]; | |
if (prefix){ | |
sprintf(buff, "%s/%s_%s_%d_%06d",prefix, imbase, cfgbase, max_layer, e); | |
}else{ | |
sprintf(buff, "%s_%s_%d_%06d",imbase, cfgbase, max_layer, e); | |
} | |
printf("%d %s\n", e, buff); | |
save_image(im, buff); | |
//show_image(im, buff, 0); | |
if(rotate){ | |
image rot = rotate_image(im, rotate); | |
free_image(im); | |
im = rot; | |
} | |
image crop = crop_image(im, im.w * (1. - zoom)/2., im.h * (1.-zoom)/2., im.w*zoom, im.h*zoom); | |
image resized = resize_image(crop, im.w, im.h); | |
free_image(im); | |
free_image(crop); | |
im = resized; | |
} | |
} | |