Spaces:
Sleeping
Sleeping
void train_tag(char *cfgfile, char *weightfile, int clear) | |
{ | |
srand(time(0)); | |
float avg_loss = -1; | |
char *base = basecfg(cfgfile); | |
char *backup_directory = "/home/pjreddie/backup/"; | |
printf("%s\n", base); | |
network *net = load_network(cfgfile, weightfile, clear); | |
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay); | |
int imgs = 1024; | |
list *plist = get_paths("/home/pjreddie/tag/train.list"); | |
char **paths = (char **)list_to_array(plist); | |
printf("%d\n", plist->size); | |
int N = plist->size; | |
clock_t time; | |
pthread_t load_thread; | |
data train; | |
data buffer; | |
load_args args = {0}; | |
args.w = net->w; | |
args.h = net->h; | |
args.min = net->w; | |
args.max = net->max_crop; | |
args.size = net->w; | |
args.paths = paths; | |
args.classes = net->outputs; | |
args.n = imgs; | |
args.m = N; | |
args.d = &buffer; | |
args.type = TAG_DATA; | |
args.angle = net->angle; | |
args.exposure = net->exposure; | |
args.saturation = net->saturation; | |
args.hue = net->hue; | |
fprintf(stderr, "%d classes\n", net->outputs); | |
load_thread = load_data_in_thread(args); | |
int epoch = (*net->seen)/N; | |
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){ | |
time=clock(); | |
pthread_join(load_thread, 0); | |
train = buffer; | |
load_thread = load_data_in_thread(args); | |
printf("Loaded: %lf seconds\n", sec(clock()-time)); | |
time=clock(); | |
float loss = train_network(net, train); | |
if(avg_loss == -1) avg_loss = loss; | |
avg_loss = avg_loss*.9 + loss*.1; | |
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen); | |
free_data(train); | |
if(*net->seen/N > epoch){ | |
epoch = *net->seen/N; | |
char buff[256]; | |
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); | |
save_weights(net, buff); | |
} | |
if(get_current_batch(net)%100 == 0){ | |
char buff[256]; | |
sprintf(buff, "%s/%s.backup",backup_directory,base); | |
save_weights(net, buff); | |
} | |
} | |
char buff[256]; | |
sprintf(buff, "%s/%s.weights", backup_directory, base); | |
save_weights(net, buff); | |
pthread_join(load_thread, 0); | |
free_data(buffer); | |
free_network(net); | |
free_ptrs((void**)paths, plist->size); | |
free_list(plist); | |
free(base); | |
} | |
void test_tag(char *cfgfile, char *weightfile, char *filename) | |
{ | |
network *net = load_network(cfgfile, weightfile, 0); | |
set_batch_network(net, 1); | |
srand(2222222); | |
int i = 0; | |
char **names = get_labels("data/tags.txt"); | |
clock_t time; | |
int indexes[10]; | |
char buff[256]; | |
char *input = buff; | |
int size = net->w; | |
while(1){ | |
if(filename){ | |
strncpy(input, filename, 256); | |
}else{ | |
printf("Enter Image Path: "); | |
fflush(stdout); | |
input = fgets(input, 256, stdin); | |
if(!input) return; | |
strtok(input, "\n"); | |
} | |
image im = load_image_color(input, 0, 0); | |
image r = resize_min(im, size); | |
resize_network(net, r.w, r.h); | |
printf("%d %d\n", r.w, r.h); | |
float *X = r.data; | |
time=clock(); | |
float *predictions = network_predict(net, X); | |
top_predictions(net, 10, indexes); | |
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); | |
for(i = 0; i < 10; ++i){ | |
int index = indexes[i]; | |
printf("%.1f%%: %s\n", predictions[index]*100, names[index]); | |
} | |
if(r.data != im.data) free_image(r); | |
free_image(im); | |
if (filename) break; | |
} | |
} | |
void run_tag(int argc, char **argv) | |
{ | |
if(argc < 4){ | |
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); | |
return; | |
} | |
int clear = find_arg(argc, argv, "-clear"); | |
char *cfg = argv[3]; | |
char *weights = (argc > 4) ? argv[4] : 0; | |
char *filename = (argc > 5) ? argv[5] : 0; | |
if(0==strcmp(argv[2], "train")) train_tag(cfg, weights, clear); | |
else if(0==strcmp(argv[2], "test")) test_tag(cfg, weights, filename); | |
} | |