Spaces:
Running
Running
extern "C" { | |
} | |
__global__ void binarize_kernel(float *x, int n, float *binary) | |
{ | |
int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (i >= n) return; | |
binary[i] = (x[i] >= 0) ? 1 : -1; | |
} | |
void binarize_gpu(float *x, int n, float *binary) | |
{ | |
binarize_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, binary); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void binarize_input_kernel(float *input, int n, int size, float *binary) | |
{ | |
int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (s >= size) return; | |
int i = 0; | |
float mean = 0; | |
for(i = 0; i < n; ++i){ | |
mean += fabsf(input[i*size + s]); | |
} | |
mean = mean / n; | |
for(i = 0; i < n; ++i){ | |
binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; | |
} | |
} | |
void binarize_input_gpu(float *input, int n, int size, float *binary) | |
{ | |
binarize_input_kernel<<<cuda_gridsize(size), BLOCK>>>(input, n, size, binary); | |
check_error(cudaPeekAtLastError()); | |
} | |
__global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary) | |
{ | |
int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if (f >= n) return; | |
int i = 0; | |
float mean = 0; | |
for(i = 0; i < size; ++i){ | |
mean += fabsf(weights[f*size + i]); | |
} | |
mean = mean / size; | |
for(i = 0; i < size; ++i){ | |
binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; | |
//binary[f*size + i] = weights[f*size + i]; | |
} | |
} | |
void binarize_weights_gpu(float *weights, int n, int size, float *binary) | |
{ | |
binarize_weights_kernel<<<cuda_gridsize(n), BLOCK>>>(weights, n, size, binary); | |
check_error(cudaPeekAtLastError()); | |
} | |
void forward_convolutional_layer_gpu(convolutional_layer l, network net) | |
{ | |
fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1); | |
if(l.binary){ | |
binarize_weights_gpu(l.weights_gpu, l.n, l.c/l.groups*l.size*l.size, l.binary_weights_gpu); | |
swap_binary(&l); | |
} | |
if(l.xnor){ | |
binarize_weights_gpu(l.weights_gpu, l.n, l.c/l.groups*l.size*l.size, l.binary_weights_gpu); | |
swap_binary(&l); | |
binarize_gpu(net.input_gpu, l.c*l.h*l.w*l.batch, l.binary_input_gpu); | |
net.input_gpu = l.binary_input_gpu; | |
} | |
float one = 1; | |
cudnnConvolutionForward(cudnn_handle(), | |
&one, | |
l.srcTensorDesc, | |
net.input_gpu, | |
l.weightDesc, | |
l.weights_gpu, | |
l.convDesc, | |
l.fw_algo, | |
net.workspace, | |
l.workspace_size, | |
&one, | |
l.dstTensorDesc, | |
l.output_gpu); | |
int i, j; | |
int m = l.n/l.groups; | |
int k = l.size*l.size*l.c/l.groups; | |
int n = l.out_w*l.out_h; | |
for(i = 0; i < l.batch; ++i){ | |
for(j = 0; j < l.groups; ++j){ | |
float *a = l.weights_gpu + j*l.nweights/l.groups; | |
float *b = net.workspace; | |
float *c = l.output_gpu + (i*l.groups + j)*n*m; | |
float *im = net.input_gpu + (i*l.groups + j)*l.c/l.groups*l.h*l.w; | |
if (l.size == 1){ | |
b = im; | |
} else { | |
im2col_gpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b); | |
} | |
gemm_gpu(0,0,m,n,k,1,a,k,b,n,1,c,n); | |
} | |
} | |
if (l.batch_normalize) { | |
forward_batchnorm_layer_gpu(l, net); | |
} else { | |
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); | |
} | |
activate_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation); | |
//if(l.dot > 0) dot_error_gpu(l); | |
if(l.binary || l.xnor) swap_binary(&l); | |
} | |
__global__ void smooth_kernel(float *x, int n, int w, int h, int c, int size, float rate, float *delta) | |
{ | |
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; | |
if(id >= n) return; | |
int j = id % w; | |
id /= w; | |
int i = id % h; | |
id /= h; | |
int k = id % c; | |
id /= c; | |
int b = id; | |
int w_offset = -(size/2.f); | |
int h_offset = -(size/2.f); | |
int out_index = j + w*(i + h*(k + c*b)); | |
int l, m; | |
for(l = 0; l < size; ++l){ | |
for(m = 0; m < size; ++m){ | |
int cur_h = h_offset + i + l; | |
int cur_w = w_offset + j + m; | |
int index = cur_w + w*(cur_h + h*(k + b*c)); | |
int valid = (cur_h >= 0 && cur_h < h && | |
cur_w >= 0 && cur_w < w); | |
delta[out_index] += valid ? rate*(x[index] - x[out_index]) : 0; | |
} | |
} | |
} | |
extern "C" void smooth_layer(layer l, int size, float rate) | |
{ | |
int h = l.out_h; | |
int w = l.out_w; | |
int c = l.out_c; | |
size_t n = h*w*c*l.batch; | |
smooth_kernel<<<cuda_gridsize(n), BLOCK>>>(l.output_gpu, n, l.w, l.h, l.c, size, rate, l.delta_gpu); | |
check_error(cudaPeekAtLastError()); | |
} | |
void backward_convolutional_layer_gpu(convolutional_layer l, network net) | |
{ | |
if(l.smooth){ | |
smooth_layer(l, 5, l.smooth); | |
} | |
//constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1); | |
gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); | |
if(l.batch_normalize){ | |
backward_batchnorm_layer_gpu(l, net); | |
} else { | |
backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); | |
} | |
float *original_input = net.input_gpu; | |
if(l.xnor) net.input_gpu = l.binary_input_gpu; | |
float one = 1; | |
cudnnConvolutionBackwardFilter(cudnn_handle(), | |
&one, | |
l.srcTensorDesc, | |
net.input_gpu, | |
l.ddstTensorDesc, | |
l.delta_gpu, | |
l.convDesc, | |
l.bf_algo, | |
net.workspace, | |
l.workspace_size, | |
&one, | |
l.dweightDesc, | |
l.weight_updates_gpu); | |
if(net.delta_gpu){ | |
if(l.binary || l.xnor) swap_binary(&l); | |
cudnnConvolutionBackwardData(cudnn_handle(), | |
&one, | |
l.weightDesc, | |
l.weights_gpu, | |
l.ddstTensorDesc, | |
l.delta_gpu, | |
l.convDesc, | |
l.bd_algo, | |
net.workspace, | |
l.workspace_size, | |
&one, | |
l.dsrcTensorDesc, | |
net.delta_gpu); | |
if(l.binary || l.xnor) swap_binary(&l); | |
if(l.xnor) gradient_array_gpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, net.delta_gpu); | |
} | |
int m = l.n/l.groups; | |
int n = l.size*l.size*l.c/l.groups; | |
int k = l.out_w*l.out_h; | |
int i, j; | |
for(i = 0; i < l.batch; ++i){ | |
for(j = 0; j < l.groups; ++j){ | |
float *a = l.delta_gpu + (i*l.groups + j)*m*k; | |
float *b = net.workspace; | |
float *c = l.weight_updates_gpu + j*l.nweights/l.groups; | |
float *im = net.input_gpu+(i*l.groups + j)*l.c/l.groups*l.h*l.w; | |
float *imd = net.delta_gpu+(i*l.groups + j)*l.c/l.groups*l.h*l.w; | |
im2col_gpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b); | |
gemm_gpu(0,1,m,n,k,1,a,k,b,k,1,c,n); | |
if (net.delta_gpu) { | |
if (l.binary || l.xnor) swap_binary(&l); | |
a = l.weights_gpu + j*l.nweights/l.groups; | |
b = l.delta_gpu + (i*l.groups + j)*m*k; | |
c = net.workspace; | |
if (l.size == 1) { | |
c = imd; | |
} | |
gemm_gpu(1,0,n,k,m,1,a,n,b,k,0,c,k); | |
if (l.size != 1) { | |
col2im_gpu(net.workspace, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, imd); | |
} | |
if(l.binary || l.xnor) { | |
swap_binary(&l); | |
} | |
} | |
if(l.xnor) gradient_array_gpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, net.delta_gpu + i*l.c*l.h*l.w); | |
} | |
} | |
} | |
void pull_convolutional_layer(layer l) | |
{ | |
cuda_pull_array(l.weights_gpu, l.weights, l.nweights); | |
cuda_pull_array(l.biases_gpu, l.biases, l.n); | |
cuda_pull_array(l.weight_updates_gpu, l.weight_updates, l.nweights); | |
cuda_pull_array(l.bias_updates_gpu, l.bias_updates, l.n); | |
if (l.batch_normalize){ | |
cuda_pull_array(l.scales_gpu, l.scales, l.n); | |
cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.n); | |
cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.n); | |
} | |
} | |
void push_convolutional_layer(layer l) | |
{ | |
cuda_push_array(l.weights_gpu, l.weights, l.nweights); | |
cuda_push_array(l.biases_gpu, l.biases, l.n); | |
cuda_push_array(l.weight_updates_gpu, l.weight_updates, l.nweights); | |
cuda_push_array(l.bias_updates_gpu, l.bias_updates, l.n); | |
if (l.batch_normalize){ | |
cuda_push_array(l.scales_gpu, l.scales, l.n); | |
cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.n); | |
cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.n); | |
} | |
} | |
void update_convolutional_layer_gpu(layer l, update_args a) | |
{ | |
float learning_rate = a.learning_rate*l.learning_rate_scale; | |
float momentum = a.momentum; | |
float decay = a.decay; | |
int batch = a.batch; | |
if(a.adam){ | |
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.nweights, batch, a.t); | |
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t); | |
if(l.scales_gpu){ | |
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t); | |
} | |
}else{ | |
axpy_gpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); | |
axpy_gpu(l.nweights, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); | |
scal_gpu(l.nweights, momentum, l.weight_updates_gpu, 1); | |
axpy_gpu(l.n, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1); | |
scal_gpu(l.n, momentum, l.bias_updates_gpu, 1); | |
if(l.scales_gpu){ | |
axpy_gpu(l.n, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1); | |
scal_gpu(l.n, momentum, l.scale_updates_gpu, 1); | |
} | |
} | |
if(l.clip){ | |
constrain_gpu(l.nweights, l.clip, l.weights_gpu, 1); | |
} | |
} | |