Spaces:
Running
Running
image get_crop_image(crop_layer l) | |
{ | |
int h = l.out_h; | |
int w = l.out_w; | |
int c = l.out_c; | |
return float_to_image(w,h,c,l.output); | |
} | |
void backward_crop_layer(const crop_layer l, network net){} | |
void backward_crop_layer_gpu(const crop_layer l, network net){} | |
crop_layer make_crop_layer(int batch, int h, int w, int c, int crop_height, int crop_width, int flip, float angle, float saturation, float exposure) | |
{ | |
fprintf(stderr, "Crop Layer: %d x %d -> %d x %d x %d image\n", h,w,crop_height,crop_width,c); | |
crop_layer l = {0}; | |
l.type = CROP; | |
l.batch = batch; | |
l.h = h; | |
l.w = w; | |
l.c = c; | |
l.scale = (float)crop_height / h; | |
l.flip = flip; | |
l.angle = angle; | |
l.saturation = saturation; | |
l.exposure = exposure; | |
l.out_w = crop_width; | |
l.out_h = crop_height; | |
l.out_c = c; | |
l.inputs = l.w * l.h * l.c; | |
l.outputs = l.out_w * l.out_h * l.out_c; | |
l.output = calloc(l.outputs*batch, sizeof(float)); | |
l.forward = forward_crop_layer; | |
l.backward = backward_crop_layer; | |
l.forward_gpu = forward_crop_layer_gpu; | |
l.backward_gpu = backward_crop_layer_gpu; | |
l.output_gpu = cuda_make_array(l.output, l.outputs*batch); | |
l.rand_gpu = cuda_make_array(0, l.batch*8); | |
return l; | |
} | |
void resize_crop_layer(layer *l, int w, int h) | |
{ | |
l->w = w; | |
l->h = h; | |
l->out_w = l->scale*w; | |
l->out_h = l->scale*h; | |
l->inputs = l->w * l->h * l->c; | |
l->outputs = l->out_h * l->out_w * l->out_c; | |
l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); | |
cuda_free(l->output_gpu); | |
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); | |
} | |
void forward_crop_layer(const crop_layer l, network net) | |
{ | |
int i,j,c,b,row,col; | |
int index; | |
int count = 0; | |
int flip = (l.flip && rand()%2); | |
int dh = rand()%(l.h - l.out_h + 1); | |
int dw = rand()%(l.w - l.out_w + 1); | |
float scale = 2; | |
float trans = -1; | |
if(l.noadjust){ | |
scale = 1; | |
trans = 0; | |
} | |
if(!net.train){ | |
flip = 0; | |
dh = (l.h - l.out_h)/2; | |
dw = (l.w - l.out_w)/2; | |
} | |
for(b = 0; b < l.batch; ++b){ | |
for(c = 0; c < l.c; ++c){ | |
for(i = 0; i < l.out_h; ++i){ | |
for(j = 0; j < l.out_w; ++j){ | |
if(flip){ | |
col = l.w - dw - j - 1; | |
}else{ | |
col = j + dw; | |
} | |
row = i + dh; | |
index = col+l.w*(row+l.h*(c + l.c*b)); | |
l.output[count++] = net.input[index]*scale + trans; | |
} | |
} | |
} | |
} | |
} | |