Spaces:
Running
Running
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; | |
list *get_paths(char *filename) | |
{ | |
char *path; | |
FILE *file = fopen(filename, "r"); | |
if(!file) file_error(filename); | |
list *lines = make_list(); | |
while((path=fgetl(file))){ | |
list_insert(lines, path); | |
} | |
fclose(file); | |
return lines; | |
} | |
/* | |
char **get_random_paths_indexes(char **paths, int n, int m, int *indexes) | |
{ | |
char **random_paths = calloc(n, sizeof(char*)); | |
int i; | |
pthread_mutex_lock(&mutex); | |
for(i = 0; i < n; ++i){ | |
int index = rand()%m; | |
indexes[i] = index; | |
random_paths[i] = paths[index]; | |
if(i == 0) printf("%s\n", paths[index]); | |
} | |
pthread_mutex_unlock(&mutex); | |
return random_paths; | |
} | |
*/ | |
char **get_random_paths(char **paths, int n, int m) | |
{ | |
char **random_paths = calloc(n, sizeof(char*)); | |
int i; | |
pthread_mutex_lock(&mutex); | |
for(i = 0; i < n; ++i){ | |
int index = rand()%m; | |
random_paths[i] = paths[index]; | |
//if(i == 0) printf("%s\n", paths[index]); | |
} | |
pthread_mutex_unlock(&mutex); | |
return random_paths; | |
} | |
char **find_replace_paths(char **paths, int n, char *find, char *replace) | |
{ | |
char **replace_paths = calloc(n, sizeof(char*)); | |
int i; | |
for(i = 0; i < n; ++i){ | |
char replaced[4096]; | |
find_replace(paths[i], find, replace, replaced); | |
replace_paths[i] = copy_string(replaced); | |
} | |
return replace_paths; | |
} | |
matrix load_image_paths_gray(char **paths, int n, int w, int h) | |
{ | |
int i; | |
matrix X; | |
X.rows = n; | |
X.vals = calloc(X.rows, sizeof(float*)); | |
X.cols = 0; | |
for(i = 0; i < n; ++i){ | |
image im = load_image(paths[i], w, h, 3); | |
image gray = grayscale_image(im); | |
free_image(im); | |
im = gray; | |
X.vals[i] = im.data; | |
X.cols = im.h*im.w*im.c; | |
} | |
return X; | |
} | |
matrix load_image_paths(char **paths, int n, int w, int h) | |
{ | |
int i; | |
matrix X; | |
X.rows = n; | |
X.vals = calloc(X.rows, sizeof(float*)); | |
X.cols = 0; | |
for(i = 0; i < n; ++i){ | |
image im = load_image_color(paths[i], w, h); | |
X.vals[i] = im.data; | |
X.cols = im.h*im.w*im.c; | |
} | |
return X; | |
} | |
matrix load_image_augment_paths(char **paths, int n, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure, int center) | |
{ | |
int i; | |
matrix X; | |
X.rows = n; | |
X.vals = calloc(X.rows, sizeof(float*)); | |
X.cols = 0; | |
for(i = 0; i < n; ++i){ | |
image im = load_image_color(paths[i], 0, 0); | |
image crop; | |
if(center){ | |
crop = center_crop_image(im, size, size); | |
} else { | |
crop = random_augment_image(im, angle, aspect, min, max, size, size); | |
} | |
int flip = rand()%2; | |
if (flip) flip_image(crop); | |
random_distort_image(crop, hue, saturation, exposure); | |
/* | |
show_image(im, "orig"); | |
show_image(crop, "crop"); | |
cvWaitKey(0); | |
*/ | |
//grayscale_image_3c(crop); | |
free_image(im); | |
X.vals[i] = crop.data; | |
X.cols = crop.h*crop.w*crop.c; | |
} | |
return X; | |
} | |
box_label *read_boxes(char *filename, int *n) | |
{ | |
FILE *file = fopen(filename, "r"); | |
if(!file) file_error(filename); | |
float x, y, h, w; | |
int id; | |
int count = 0; | |
int size = 64; | |
box_label *boxes = calloc(size, sizeof(box_label)); | |
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){ | |
if(count == size) { | |
size = size * 2; | |
boxes = realloc(boxes, size*sizeof(box_label)); | |
} | |
boxes[count].id = id; | |
boxes[count].x = x; | |
boxes[count].y = y; | |
boxes[count].h = h; | |
boxes[count].w = w; | |
boxes[count].left = x - w/2; | |
boxes[count].right = x + w/2; | |
boxes[count].top = y - h/2; | |
boxes[count].bottom = y + h/2; | |
++count; | |
} | |
fclose(file); | |
*n = count; | |
return boxes; | |
} | |
void randomize_boxes(box_label *b, int n) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
box_label swap = b[i]; | |
int index = rand()%n; | |
b[i] = b[index]; | |
b[index] = swap; | |
} | |
} | |
void correct_boxes(box_label *boxes, int n, float dx, float dy, float sx, float sy, int flip) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
if(boxes[i].x == 0 && boxes[i].y == 0) { | |
boxes[i].x = 999999; | |
boxes[i].y = 999999; | |
boxes[i].w = 999999; | |
boxes[i].h = 999999; | |
continue; | |
} | |
boxes[i].left = boxes[i].left * sx - dx; | |
boxes[i].right = boxes[i].right * sx - dx; | |
boxes[i].top = boxes[i].top * sy - dy; | |
boxes[i].bottom = boxes[i].bottom* sy - dy; | |
if(flip){ | |
float swap = boxes[i].left; | |
boxes[i].left = 1. - boxes[i].right; | |
boxes[i].right = 1. - swap; | |
} | |
boxes[i].left = constrain(0, 1, boxes[i].left); | |
boxes[i].right = constrain(0, 1, boxes[i].right); | |
boxes[i].top = constrain(0, 1, boxes[i].top); | |
boxes[i].bottom = constrain(0, 1, boxes[i].bottom); | |
boxes[i].x = (boxes[i].left+boxes[i].right)/2; | |
boxes[i].y = (boxes[i].top+boxes[i].bottom)/2; | |
boxes[i].w = (boxes[i].right - boxes[i].left); | |
boxes[i].h = (boxes[i].bottom - boxes[i].top); | |
boxes[i].w = constrain(0, 1, boxes[i].w); | |
boxes[i].h = constrain(0, 1, boxes[i].h); | |
} | |
} | |
void fill_truth_swag(char *path, float *truth, int classes, int flip, float dx, float dy, float sx, float sy) | |
{ | |
char labelpath[4096]; | |
find_replace(path, "images", "labels", labelpath); | |
find_replace(labelpath, "JPEGImages", "labels", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".JPG", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
int count = 0; | |
box_label *boxes = read_boxes(labelpath, &count); | |
randomize_boxes(boxes, count); | |
correct_boxes(boxes, count, dx, dy, sx, sy, flip); | |
float x,y,w,h; | |
int id; | |
int i; | |
for (i = 0; i < count && i < 90; ++i) { | |
x = boxes[i].x; | |
y = boxes[i].y; | |
w = boxes[i].w; | |
h = boxes[i].h; | |
id = boxes[i].id; | |
if (w < .0 || h < .0) continue; | |
int index = (4+classes) * i; | |
truth[index++] = x; | |
truth[index++] = y; | |
truth[index++] = w; | |
truth[index++] = h; | |
if (id < classes) truth[index+id] = 1; | |
} | |
free(boxes); | |
} | |
void fill_truth_region(char *path, float *truth, int classes, int num_boxes, int flip, float dx, float dy, float sx, float sy) | |
{ | |
char labelpath[4096]; | |
find_replace(path, "images", "labels", labelpath); | |
find_replace(labelpath, "JPEGImages", "labels", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".png", ".txt", labelpath); | |
find_replace(labelpath, ".JPG", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
int count = 0; | |
box_label *boxes = read_boxes(labelpath, &count); | |
randomize_boxes(boxes, count); | |
correct_boxes(boxes, count, dx, dy, sx, sy, flip); | |
float x,y,w,h; | |
int id; | |
int i; | |
for (i = 0; i < count; ++i) { | |
x = boxes[i].x; | |
y = boxes[i].y; | |
w = boxes[i].w; | |
h = boxes[i].h; | |
id = boxes[i].id; | |
if (w < .005 || h < .005) continue; | |
int col = (int)(x*num_boxes); | |
int row = (int)(y*num_boxes); | |
x = x*num_boxes - col; | |
y = y*num_boxes - row; | |
int index = (col+row*num_boxes)*(5+classes); | |
if (truth[index]) continue; | |
truth[index++] = 1; | |
if (id < classes) truth[index+id] = 1; | |
index += classes; | |
truth[index++] = x; | |
truth[index++] = y; | |
truth[index++] = w; | |
truth[index++] = h; | |
} | |
free(boxes); | |
} | |
void load_rle(image im, int *rle, int n) | |
{ | |
int count = 0; | |
int curr = 0; | |
int i,j; | |
for(i = 0; i < n; ++i){ | |
for(j = 0; j < rle[i]; ++j){ | |
im.data[count++] = curr; | |
} | |
curr = 1 - curr; | |
} | |
for(; count < im.h*im.w*im.c; ++count){ | |
im.data[count] = curr; | |
} | |
} | |
void or_image(image src, image dest, int c) | |
{ | |
int i; | |
for(i = 0; i < src.w*src.h; ++i){ | |
if(src.data[i]) dest.data[dest.w*dest.h*c + i] = 1; | |
} | |
} | |
void exclusive_image(image src) | |
{ | |
int k, j, i; | |
int s = src.w*src.h; | |
for(k = 0; k < src.c-1; ++k){ | |
for(i = 0; i < s; ++i){ | |
if (src.data[k*s + i]){ | |
for(j = k+1; j < src.c; ++j){ | |
src.data[j*s + i] = 0; | |
} | |
} | |
} | |
} | |
} | |
box bound_image(image im) | |
{ | |
int x,y; | |
int minx = im.w; | |
int miny = im.h; | |
int maxx = 0; | |
int maxy = 0; | |
for(y = 0; y < im.h; ++y){ | |
for(x = 0; x < im.w; ++x){ | |
if(im.data[y*im.w + x]){ | |
minx = (x < minx) ? x : minx; | |
miny = (y < miny) ? y : miny; | |
maxx = (x > maxx) ? x : maxx; | |
maxy = (y > maxy) ? y : maxy; | |
} | |
} | |
} | |
box b = {minx, miny, maxx-minx + 1, maxy-miny + 1}; | |
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h); | |
return b; | |
} | |
void fill_truth_iseg(char *path, int num_boxes, float *truth, int classes, int w, int h, augment_args aug, int flip, int mw, int mh) | |
{ | |
char labelpath[4096]; | |
find_replace(path, "images", "mask", labelpath); | |
find_replace(labelpath, "JPEGImages", "mask", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".JPG", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
FILE *file = fopen(labelpath, "r"); | |
if(!file) file_error(labelpath); | |
char buff[32788]; | |
int id; | |
int i = 0; | |
int j; | |
image part = make_image(w, h, 1); | |
while((fscanf(file, "%d %s", &id, buff) == 2) && i < num_boxes){ | |
int n = 0; | |
int *rle = read_intlist(buff, &n, 0); | |
load_rle(part, rle, n); | |
image sized = rotate_crop_image(part, aug.rad, aug.scale, aug.w, aug.h, aug.dx, aug.dy, aug.aspect); | |
if(flip) flip_image(sized); | |
image mask = resize_image(sized, mw, mh); | |
truth[i*(mw*mh+1)] = id; | |
for(j = 0; j < mw*mh; ++j){ | |
truth[i*(mw*mh + 1) + 1 + j] = mask.data[j]; | |
} | |
++i; | |
free_image(mask); | |
free_image(sized); | |
free(rle); | |
} | |
if(i < num_boxes) truth[i*(mw*mh+1)] = -1; | |
fclose(file); | |
free_image(part); | |
} | |
void fill_truth_mask(char *path, int num_boxes, float *truth, int classes, int w, int h, augment_args aug, int flip, int mw, int mh) | |
{ | |
char labelpath[4096]; | |
find_replace(path, "images", "mask", labelpath); | |
find_replace(labelpath, "JPEGImages", "mask", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".JPG", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
FILE *file = fopen(labelpath, "r"); | |
if(!file) file_error(labelpath); | |
char buff[32788]; | |
int id; | |
int i = 0; | |
image part = make_image(w, h, 1); | |
while((fscanf(file, "%d %s", &id, buff) == 2) && i < num_boxes){ | |
int n = 0; | |
int *rle = read_intlist(buff, &n, 0); | |
load_rle(part, rle, n); | |
image sized = rotate_crop_image(part, aug.rad, aug.scale, aug.w, aug.h, aug.dx, aug.dy, aug.aspect); | |
if(flip) flip_image(sized); | |
box b = bound_image(sized); | |
if(b.w > 0){ | |
image crop = crop_image(sized, b.x, b.y, b.w, b.h); | |
image mask = resize_image(crop, mw, mh); | |
truth[i*(4 + mw*mh + 1) + 0] = (b.x + b.w/2.)/sized.w; | |
truth[i*(4 + mw*mh + 1) + 1] = (b.y + b.h/2.)/sized.h; | |
truth[i*(4 + mw*mh + 1) + 2] = b.w/sized.w; | |
truth[i*(4 + mw*mh + 1) + 3] = b.h/sized.h; | |
int j; | |
for(j = 0; j < mw*mh; ++j){ | |
truth[i*(4 + mw*mh + 1) + 4 + j] = mask.data[j]; | |
} | |
truth[i*(4 + mw*mh + 1) + 4 + mw*mh] = id; | |
free_image(crop); | |
free_image(mask); | |
++i; | |
} | |
free_image(sized); | |
free(rle); | |
} | |
fclose(file); | |
free_image(part); | |
} | |
void fill_truth_detection(char *path, int num_boxes, float *truth, int classes, int flip, float dx, float dy, float sx, float sy) | |
{ | |
char labelpath[4096]; | |
find_replace(path, "images", "labels", labelpath); | |
find_replace(labelpath, "JPEGImages", "labels", labelpath); | |
find_replace(labelpath, "raw", "labels", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".png", ".txt", labelpath); | |
find_replace(labelpath, ".JPG", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
int count = 0; | |
box_label *boxes = read_boxes(labelpath, &count); | |
randomize_boxes(boxes, count); | |
correct_boxes(boxes, count, dx, dy, sx, sy, flip); | |
if(count > num_boxes) count = num_boxes; | |
float x,y,w,h; | |
int id; | |
int i; | |
int sub = 0; | |
for (i = 0; i < count; ++i) { | |
x = boxes[i].x; | |
y = boxes[i].y; | |
w = boxes[i].w; | |
h = boxes[i].h; | |
id = boxes[i].id; | |
if ((w < .001 || h < .001)) { | |
++sub; | |
continue; | |
} | |
truth[(i-sub)*5+0] = x; | |
truth[(i-sub)*5+1] = y; | |
truth[(i-sub)*5+2] = w; | |
truth[(i-sub)*5+3] = h; | |
truth[(i-sub)*5+4] = id; | |
} | |
free(boxes); | |
} | |
void print_letters(float *pred, int n) | |
{ | |
int i; | |
for(i = 0; i < n; ++i){ | |
int index = max_index(pred+i*NUMCHARS, NUMCHARS); | |
printf("%c", int_to_alphanum(index)); | |
} | |
printf("\n"); | |
} | |
void fill_truth_captcha(char *path, int n, float *truth) | |
{ | |
char *begin = strrchr(path, '/'); | |
++begin; | |
int i; | |
for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){ | |
int index = alphanum_to_int(begin[i]); | |
if(index > 35) printf("Bad %c\n", begin[i]); | |
truth[i*NUMCHARS+index] = 1; | |
} | |
for(;i < n; ++i){ | |
truth[i*NUMCHARS + NUMCHARS-1] = 1; | |
} | |
} | |
data load_data_captcha(char **paths, int n, int m, int k, int w, int h) | |
{ | |
if(m) paths = get_random_paths(paths, n, m); | |
data d = {0}; | |
d.shallow = 0; | |
d.X = load_image_paths(paths, n, w, h); | |
d.y = make_matrix(n, k*NUMCHARS); | |
int i; | |
for(i = 0; i < n; ++i){ | |
fill_truth_captcha(paths[i], k, d.y.vals[i]); | |
} | |
if(m) free(paths); | |
return d; | |
} | |
data load_data_captcha_encode(char **paths, int n, int m, int w, int h) | |
{ | |
if(m) paths = get_random_paths(paths, n, m); | |
data d = {0}; | |
d.shallow = 0; | |
d.X = load_image_paths(paths, n, w, h); | |
d.X.cols = 17100; | |
d.y = d.X; | |
if(m) free(paths); | |
return d; | |
} | |
void fill_truth(char *path, char **labels, int k, float *truth) | |
{ | |
int i; | |
memset(truth, 0, k*sizeof(float)); | |
int count = 0; | |
for(i = 0; i < k; ++i){ | |
if(strstr(path, labels[i])){ | |
truth[i] = 1; | |
++count; | |
//printf("%s %s %d\n", path, labels[i], i); | |
} | |
} | |
if(count != 1 && (k != 1 || count != 0)) printf("Too many or too few labels: %d, %s\n", count, path); | |
} | |
void fill_hierarchy(float *truth, int k, tree *hierarchy) | |
{ | |
int j; | |
for(j = 0; j < k; ++j){ | |
if(truth[j]){ | |
int parent = hierarchy->parent[j]; | |
while(parent >= 0){ | |
truth[parent] = 1; | |
parent = hierarchy->parent[parent]; | |
} | |
} | |
} | |
int i; | |
int count = 0; | |
for(j = 0; j < hierarchy->groups; ++j){ | |
//printf("%d\n", count); | |
int mask = 1; | |
for(i = 0; i < hierarchy->group_size[j]; ++i){ | |
if(truth[count + i]){ | |
mask = 0; | |
break; | |
} | |
} | |
if (mask) { | |
for(i = 0; i < hierarchy->group_size[j]; ++i){ | |
truth[count + i] = SECRET_NUM; | |
} | |
} | |
count += hierarchy->group_size[j]; | |
} | |
} | |
matrix load_regression_labels_paths(char **paths, int n, int k) | |
{ | |
matrix y = make_matrix(n, k); | |
int i,j; | |
for(i = 0; i < n; ++i){ | |
char labelpath[4096]; | |
find_replace(paths[i], "images", "labels", labelpath); | |
find_replace(labelpath, "JPEGImages", "labels", labelpath); | |
find_replace(labelpath, ".BMP", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
find_replace(labelpath, ".JPG", ".txt", labelpath); | |
find_replace(labelpath, ".JPeG", ".txt", labelpath); | |
find_replace(labelpath, ".Jpeg", ".txt", labelpath); | |
find_replace(labelpath, ".PNG", ".txt", labelpath); | |
find_replace(labelpath, ".TIF", ".txt", labelpath); | |
find_replace(labelpath, ".bmp", ".txt", labelpath); | |
find_replace(labelpath, ".jpeg", ".txt", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".png", ".txt", labelpath); | |
find_replace(labelpath, ".tif", ".txt", labelpath); | |
FILE *file = fopen(labelpath, "r"); | |
for(j = 0; j < k; ++j){ | |
fscanf(file, "%f", &(y.vals[i][j])); | |
} | |
fclose(file); | |
} | |
return y; | |
} | |
matrix load_labels_paths(char **paths, int n, char **labels, int k, tree *hierarchy) | |
{ | |
matrix y = make_matrix(n, k); | |
int i; | |
for(i = 0; i < n && labels; ++i){ | |
fill_truth(paths[i], labels, k, y.vals[i]); | |
if(hierarchy){ | |
fill_hierarchy(y.vals[i], k, hierarchy); | |
} | |
} | |
return y; | |
} | |
matrix load_tags_paths(char **paths, int n, int k) | |
{ | |
matrix y = make_matrix(n, k); | |
int i; | |
//int count = 0; | |
for(i = 0; i < n; ++i){ | |
char label[4096]; | |
find_replace(paths[i], "images", "labels", label); | |
find_replace(label, ".jpg", ".txt", label); | |
FILE *file = fopen(label, "r"); | |
if (!file) continue; | |
//++count; | |
int tag; | |
while(fscanf(file, "%d", &tag) == 1){ | |
if(tag < k){ | |
y.vals[i][tag] = 1; | |
} | |
} | |
fclose(file); | |
} | |
//printf("%d/%d\n", count, n); | |
return y; | |
} | |
char **get_labels(char *filename) | |
{ | |
list *plist = get_paths(filename); | |
char **labels = (char **)list_to_array(plist); | |
free_list(plist); | |
return labels; | |
} | |
void free_data(data d) | |
{ | |
if(!d.shallow){ | |
free_matrix(d.X); | |
free_matrix(d.y); | |
}else{ | |
free(d.X.vals); | |
free(d.y.vals); | |
} | |
} | |
image get_segmentation_image(char *path, int w, int h, int classes) | |
{ | |
char labelpath[4096]; | |
find_replace(path, "images", "mask", labelpath); | |
find_replace(labelpath, "JPEGImages", "mask", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".JPG", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
image mask = make_image(w, h, classes); | |
FILE *file = fopen(labelpath, "r"); | |
if(!file) file_error(labelpath); | |
char buff[32788]; | |
int id; | |
image part = make_image(w, h, 1); | |
while(fscanf(file, "%d %s", &id, buff) == 2){ | |
int n = 0; | |
int *rle = read_intlist(buff, &n, 0); | |
load_rle(part, rle, n); | |
or_image(part, mask, id); | |
free(rle); | |
} | |
//exclusive_image(mask); | |
fclose(file); | |
free_image(part); | |
return mask; | |
} | |
image get_segmentation_image2(char *path, int w, int h, int classes) | |
{ | |
char labelpath[4096]; | |
find_replace(path, "images", "mask", labelpath); | |
find_replace(labelpath, "JPEGImages", "mask", labelpath); | |
find_replace(labelpath, ".jpg", ".txt", labelpath); | |
find_replace(labelpath, ".JPG", ".txt", labelpath); | |
find_replace(labelpath, ".JPEG", ".txt", labelpath); | |
image mask = make_image(w, h, classes+1); | |
int i; | |
for(i = 0; i < w*h; ++i){ | |
mask.data[w*h*classes + i] = 1; | |
} | |
FILE *file = fopen(labelpath, "r"); | |
if(!file) file_error(labelpath); | |
char buff[32788]; | |
int id; | |
image part = make_image(w, h, 1); | |
while(fscanf(file, "%d %s", &id, buff) == 2){ | |
int n = 0; | |
int *rle = read_intlist(buff, &n, 0); | |
load_rle(part, rle, n); | |
or_image(part, mask, id); | |
for(i = 0; i < w*h; ++i){ | |
if(part.data[i]) mask.data[w*h*classes + i] = 0; | |
} | |
free(rle); | |
} | |
//exclusive_image(mask); | |
fclose(file); | |
free_image(part); | |
return mask; | |
} | |
data load_data_seg(int n, char **paths, int m, int w, int h, int classes, int min, int max, float angle, float aspect, float hue, float saturation, float exposure, int div) | |
{ | |
char **random_paths = get_random_paths(paths, n, m); | |
int i; | |
data d = {0}; | |
d.shallow = 0; | |
d.X.rows = n; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.X.cols = h*w*3; | |
d.y.rows = n; | |
d.y.cols = h*w*classes/div/div; | |
d.y.vals = calloc(d.X.rows, sizeof(float*)); | |
for(i = 0; i < n; ++i){ | |
image orig = load_image_color(random_paths[i], 0, 0); | |
augment_args a = random_augment_args(orig, angle, aspect, min, max, w, h); | |
image sized = rotate_crop_image(orig, a.rad, a.scale, a.w, a.h, a.dx, a.dy, a.aspect); | |
int flip = rand()%2; | |
if(flip) flip_image(sized); | |
random_distort_image(sized, hue, saturation, exposure); | |
d.X.vals[i] = sized.data; | |
image mask = get_segmentation_image(random_paths[i], orig.w, orig.h, classes); | |
//image mask = make_image(orig.w, orig.h, classes+1); | |
image sized_m = rotate_crop_image(mask, a.rad, a.scale/div, a.w/div, a.h/div, a.dx/div, a.dy/div, a.aspect); | |
if(flip) flip_image(sized_m); | |
d.y.vals[i] = sized_m.data; | |
free_image(orig); | |
free_image(mask); | |
/* | |
image rgb = mask_to_rgb(sized_m, classes); | |
show_image(rgb, "part"); | |
show_image(sized, "orig"); | |
cvWaitKey(0); | |
free_image(rgb); | |
*/ | |
} | |
free(random_paths); | |
return d; | |
} | |
data load_data_iseg(int n, char **paths, int m, int w, int h, int classes, int boxes, int div, int min, int max, float angle, float aspect, float hue, float saturation, float exposure) | |
{ | |
char **random_paths = get_random_paths(paths, n, m); | |
int i; | |
data d = {0}; | |
d.shallow = 0; | |
d.X.rows = n; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.X.cols = h*w*3; | |
d.y = make_matrix(n, (((w/div)*(h/div))+1)*boxes); | |
for(i = 0; i < n; ++i){ | |
image orig = load_image_color(random_paths[i], 0, 0); | |
augment_args a = random_augment_args(orig, angle, aspect, min, max, w, h); | |
image sized = rotate_crop_image(orig, a.rad, a.scale, a.w, a.h, a.dx, a.dy, a.aspect); | |
int flip = rand()%2; | |
if(flip) flip_image(sized); | |
random_distort_image(sized, hue, saturation, exposure); | |
d.X.vals[i] = sized.data; | |
//show_image(sized, "image"); | |
fill_truth_iseg(random_paths[i], boxes, d.y.vals[i], classes, orig.w, orig.h, a, flip, w/div, h/div); | |
free_image(orig); | |
/* | |
image rgb = mask_to_rgb(sized_m, classes); | |
show_image(rgb, "part"); | |
show_image(sized, "orig"); | |
cvWaitKey(0); | |
free_image(rgb); | |
*/ | |
} | |
free(random_paths); | |
return d; | |
} | |
data load_data_mask(int n, char **paths, int m, int w, int h, int classes, int boxes, int coords, int min, int max, float angle, float aspect, float hue, float saturation, float exposure) | |
{ | |
char **random_paths = get_random_paths(paths, n, m); | |
int i; | |
data d = {0}; | |
d.shallow = 0; | |
d.X.rows = n; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.X.cols = h*w*3; | |
d.y = make_matrix(n, (coords+1)*boxes); | |
for(i = 0; i < n; ++i){ | |
image orig = load_image_color(random_paths[i], 0, 0); | |
augment_args a = random_augment_args(orig, angle, aspect, min, max, w, h); | |
image sized = rotate_crop_image(orig, a.rad, a.scale, a.w, a.h, a.dx, a.dy, a.aspect); | |
int flip = rand()%2; | |
if(flip) flip_image(sized); | |
random_distort_image(sized, hue, saturation, exposure); | |
d.X.vals[i] = sized.data; | |
//show_image(sized, "image"); | |
fill_truth_mask(random_paths[i], boxes, d.y.vals[i], classes, orig.w, orig.h, a, flip, 14, 14); | |
free_image(orig); | |
/* | |
image rgb = mask_to_rgb(sized_m, classes); | |
show_image(rgb, "part"); | |
show_image(sized, "orig"); | |
cvWaitKey(0); | |
free_image(rgb); | |
*/ | |
} | |
free(random_paths); | |
return d; | |
} | |
data load_data_region(int n, char **paths, int m, int w, int h, int size, int classes, float jitter, float hue, float saturation, float exposure) | |
{ | |
char **random_paths = get_random_paths(paths, n, m); | |
int i; | |
data d = {0}; | |
d.shallow = 0; | |
d.X.rows = n; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.X.cols = h*w*3; | |
int k = size*size*(5+classes); | |
d.y = make_matrix(n, k); | |
for(i = 0; i < n; ++i){ | |
image orig = load_image_color(random_paths[i], 0, 0); | |
int oh = orig.h; | |
int ow = orig.w; | |
int dw = (ow*jitter); | |
int dh = (oh*jitter); | |
int pleft = rand_uniform(-dw, dw); | |
int pright = rand_uniform(-dw, dw); | |
int ptop = rand_uniform(-dh, dh); | |
int pbot = rand_uniform(-dh, dh); | |
int swidth = ow - pleft - pright; | |
int sheight = oh - ptop - pbot; | |
float sx = (float)swidth / ow; | |
float sy = (float)sheight / oh; | |
int flip = rand()%2; | |
image cropped = crop_image(orig, pleft, ptop, swidth, sheight); | |
float dx = ((float)pleft/ow)/sx; | |
float dy = ((float)ptop /oh)/sy; | |
image sized = resize_image(cropped, w, h); | |
if(flip) flip_image(sized); | |
random_distort_image(sized, hue, saturation, exposure); | |
d.X.vals[i] = sized.data; | |
fill_truth_region(random_paths[i], d.y.vals[i], classes, size, flip, dx, dy, 1./sx, 1./sy); | |
free_image(orig); | |
free_image(cropped); | |
} | |
free(random_paths); | |
return d; | |
} | |
data load_data_compare(int n, char **paths, int m, int classes, int w, int h) | |
{ | |
if(m) paths = get_random_paths(paths, 2*n, m); | |
int i,j; | |
data d = {0}; | |
d.shallow = 0; | |
d.X.rows = n; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.X.cols = h*w*6; | |
int k = 2*(classes); | |
d.y = make_matrix(n, k); | |
for(i = 0; i < n; ++i){ | |
image im1 = load_image_color(paths[i*2], w, h); | |
image im2 = load_image_color(paths[i*2+1], w, h); | |
d.X.vals[i] = calloc(d.X.cols, sizeof(float)); | |
memcpy(d.X.vals[i], im1.data, h*w*3*sizeof(float)); | |
memcpy(d.X.vals[i] + h*w*3, im2.data, h*w*3*sizeof(float)); | |
int id; | |
float iou; | |
char imlabel1[4096]; | |
char imlabel2[4096]; | |
find_replace(paths[i*2], "imgs", "labels", imlabel1); | |
find_replace(imlabel1, "jpg", "txt", imlabel1); | |
FILE *fp1 = fopen(imlabel1, "r"); | |
while(fscanf(fp1, "%d %f", &id, &iou) == 2){ | |
if (d.y.vals[i][2*id] < iou) d.y.vals[i][2*id] = iou; | |
} | |
find_replace(paths[i*2+1], "imgs", "labels", imlabel2); | |
find_replace(imlabel2, "jpg", "txt", imlabel2); | |
FILE *fp2 = fopen(imlabel2, "r"); | |
while(fscanf(fp2, "%d %f", &id, &iou) == 2){ | |
if (d.y.vals[i][2*id + 1] < iou) d.y.vals[i][2*id + 1] = iou; | |
} | |
for (j = 0; j < classes; ++j){ | |
if (d.y.vals[i][2*j] > .5 && d.y.vals[i][2*j+1] < .5){ | |
d.y.vals[i][2*j] = 1; | |
d.y.vals[i][2*j+1] = 0; | |
} else if (d.y.vals[i][2*j] < .5 && d.y.vals[i][2*j+1] > .5){ | |
d.y.vals[i][2*j] = 0; | |
d.y.vals[i][2*j+1] = 1; | |
} else { | |
d.y.vals[i][2*j] = SECRET_NUM; | |
d.y.vals[i][2*j+1] = SECRET_NUM; | |
} | |
} | |
fclose(fp1); | |
fclose(fp2); | |
free_image(im1); | |
free_image(im2); | |
} | |
if(m) free(paths); | |
return d; | |
} | |
data load_data_swag(char **paths, int n, int classes, float jitter) | |
{ | |
int index = rand()%n; | |
char *random_path = paths[index]; | |
image orig = load_image_color(random_path, 0, 0); | |
int h = orig.h; | |
int w = orig.w; | |
data d = {0}; | |
d.shallow = 0; | |
d.w = w; | |
d.h = h; | |
d.X.rows = 1; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.X.cols = h*w*3; | |
int k = (4+classes)*90; | |
d.y = make_matrix(1, k); | |
int dw = w*jitter; | |
int dh = h*jitter; | |
int pleft = rand_uniform(-dw, dw); | |
int pright = rand_uniform(-dw, dw); | |
int ptop = rand_uniform(-dh, dh); | |
int pbot = rand_uniform(-dh, dh); | |
int swidth = w - pleft - pright; | |
int sheight = h - ptop - pbot; | |
float sx = (float)swidth / w; | |
float sy = (float)sheight / h; | |
int flip = rand()%2; | |
image cropped = crop_image(orig, pleft, ptop, swidth, sheight); | |
float dx = ((float)pleft/w)/sx; | |
float dy = ((float)ptop /h)/sy; | |
image sized = resize_image(cropped, w, h); | |
if(flip) flip_image(sized); | |
d.X.vals[0] = sized.data; | |
fill_truth_swag(random_path, d.y.vals[0], classes, flip, dx, dy, 1./sx, 1./sy); | |
free_image(orig); | |
free_image(cropped); | |
return d; | |
} | |
data load_data_detection(int n, char **paths, int m, int w, int h, int boxes, int classes, float jitter, float hue, float saturation, float exposure) | |
{ | |
char **random_paths = get_random_paths(paths, n, m); | |
int i; | |
data d = {0}; | |
d.shallow = 0; | |
d.X.rows = n; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.X.cols = h*w*3; | |
d.y = make_matrix(n, 5*boxes); | |
for(i = 0; i < n; ++i){ | |
image orig = load_image_color(random_paths[i], 0, 0); | |
image sized = make_image(w, h, orig.c); | |
fill_image(sized, .5); | |
float dw = jitter * orig.w; | |
float dh = jitter * orig.h; | |
float new_ar = (orig.w + rand_uniform(-dw, dw)) / (orig.h + rand_uniform(-dh, dh)); | |
//float scale = rand_uniform(.25, 2); | |
float scale = 1; | |
float nw, nh; | |
if(new_ar < 1){ | |
nh = scale * h; | |
nw = nh * new_ar; | |
} else { | |
nw = scale * w; | |
nh = nw / new_ar; | |
} | |
float dx = rand_uniform(0, w - nw); | |
float dy = rand_uniform(0, h - nh); | |
place_image(orig, nw, nh, dx, dy, sized); | |
random_distort_image(sized, hue, saturation, exposure); | |
int flip = rand()%2; | |
if(flip) flip_image(sized); | |
d.X.vals[i] = sized.data; | |
fill_truth_detection(random_paths[i], boxes, d.y.vals[i], classes, flip, -dx/w, -dy/h, nw/w, nh/h); | |
free_image(orig); | |
} | |
free(random_paths); | |
return d; | |
} | |
void *load_thread(void *ptr) | |
{ | |
//printf("Loading data: %d\n", rand()); | |
load_args a = *(struct load_args*)ptr; | |
if(a.exposure == 0) a.exposure = 1; | |
if(a.saturation == 0) a.saturation = 1; | |
if(a.aspect == 0) a.aspect = 1; | |
if (a.type == OLD_CLASSIFICATION_DATA){ | |
*a.d = load_data_old(a.paths, a.n, a.m, a.labels, a.classes, a.w, a.h); | |
} else if (a.type == REGRESSION_DATA){ | |
*a.d = load_data_regression(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure); | |
} else if (a.type == CLASSIFICATION_DATA){ | |
*a.d = load_data_augment(a.paths, a.n, a.m, a.labels, a.classes, a.hierarchy, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure, a.center); | |
} else if (a.type == SUPER_DATA){ | |
*a.d = load_data_super(a.paths, a.n, a.m, a.w, a.h, a.scale); | |
} else if (a.type == WRITING_DATA){ | |
*a.d = load_data_writing(a.paths, a.n, a.m, a.w, a.h, a.out_w, a.out_h); | |
} else if (a.type == ISEG_DATA){ | |
*a.d = load_data_iseg(a.n, a.paths, a.m, a.w, a.h, a.classes, a.num_boxes, a.scale, a.min, a.max, a.angle, a.aspect, a.hue, a.saturation, a.exposure); | |
} else if (a.type == INSTANCE_DATA){ | |
*a.d = load_data_mask(a.n, a.paths, a.m, a.w, a.h, a.classes, a.num_boxes, a.coords, a.min, a.max, a.angle, a.aspect, a.hue, a.saturation, a.exposure); | |
} else if (a.type == SEGMENTATION_DATA){ | |
*a.d = load_data_seg(a.n, a.paths, a.m, a.w, a.h, a.classes, a.min, a.max, a.angle, a.aspect, a.hue, a.saturation, a.exposure, a.scale); | |
} else if (a.type == REGION_DATA){ | |
*a.d = load_data_region(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure); | |
} else if (a.type == DETECTION_DATA){ | |
*a.d = load_data_detection(a.n, a.paths, a.m, a.w, a.h, a.num_boxes, a.classes, a.jitter, a.hue, a.saturation, a.exposure); | |
} else if (a.type == SWAG_DATA){ | |
*a.d = load_data_swag(a.paths, a.n, a.classes, a.jitter); | |
} else if (a.type == COMPARE_DATA){ | |
*a.d = load_data_compare(a.n, a.paths, a.m, a.classes, a.w, a.h); | |
} else if (a.type == IMAGE_DATA){ | |
*(a.im) = load_image_color(a.path, 0, 0); | |
*(a.resized) = resize_image(*(a.im), a.w, a.h); | |
} else if (a.type == LETTERBOX_DATA){ | |
*(a.im) = load_image_color(a.path, 0, 0); | |
*(a.resized) = letterbox_image(*(a.im), a.w, a.h); | |
} else if (a.type == TAG_DATA){ | |
*a.d = load_data_tag(a.paths, a.n, a.m, a.classes, a.min, a.max, a.size, a.angle, a.aspect, a.hue, a.saturation, a.exposure); | |
} | |
free(ptr); | |
return 0; | |
} | |
pthread_t load_data_in_thread(load_args args) | |
{ | |
pthread_t thread; | |
struct load_args *ptr = calloc(1, sizeof(struct load_args)); | |
*ptr = args; | |
if(pthread_create(&thread, 0, load_thread, ptr)) error("Thread creation failed"); | |
return thread; | |
} | |
void *load_threads(void *ptr) | |
{ | |
int i; | |
load_args args = *(load_args *)ptr; | |
if (args.threads == 0) args.threads = 1; | |
data *out = args.d; | |
int total = args.n; | |
free(ptr); | |
data *buffers = calloc(args.threads, sizeof(data)); | |
pthread_t *threads = calloc(args.threads, sizeof(pthread_t)); | |
for(i = 0; i < args.threads; ++i){ | |
args.d = buffers + i; | |
args.n = (i+1) * total/args.threads - i * total/args.threads; | |
threads[i] = load_data_in_thread(args); | |
} | |
for(i = 0; i < args.threads; ++i){ | |
pthread_join(threads[i], 0); | |
} | |
*out = concat_datas(buffers, args.threads); | |
out->shallow = 0; | |
for(i = 0; i < args.threads; ++i){ | |
buffers[i].shallow = 1; | |
free_data(buffers[i]); | |
} | |
free(buffers); | |
free(threads); | |
return 0; | |
} | |
void load_data_blocking(load_args args) | |
{ | |
struct load_args *ptr = calloc(1, sizeof(struct load_args)); | |
*ptr = args; | |
load_thread(ptr); | |
} | |
pthread_t load_data(load_args args) | |
{ | |
pthread_t thread; | |
struct load_args *ptr = calloc(1, sizeof(struct load_args)); | |
*ptr = args; | |
if(pthread_create(&thread, 0, load_threads, ptr)) error("Thread creation failed"); | |
return thread; | |
} | |
data load_data_writing(char **paths, int n, int m, int w, int h, int out_w, int out_h) | |
{ | |
if(m) paths = get_random_paths(paths, n, m); | |
char **replace_paths = find_replace_paths(paths, n, ".png", "-label.png"); | |
data d = {0}; | |
d.shallow = 0; | |
d.X = load_image_paths(paths, n, w, h); | |
d.y = load_image_paths_gray(replace_paths, n, out_w, out_h); | |
if(m) free(paths); | |
int i; | |
for(i = 0; i < n; ++i) free(replace_paths[i]); | |
free(replace_paths); | |
return d; | |
} | |
data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h) | |
{ | |
if(m) paths = get_random_paths(paths, n, m); | |
data d = {0}; | |
d.shallow = 0; | |
d.X = load_image_paths(paths, n, w, h); | |
d.y = load_labels_paths(paths, n, labels, k, 0); | |
if(m) free(paths); | |
return d; | |
} | |
/* | |
data load_data_study(char **paths, int n, int m, char **labels, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) | |
{ | |
data d = {0}; | |
d.indexes = calloc(n, sizeof(int)); | |
if(m) paths = get_random_paths_indexes(paths, n, m, d.indexes); | |
d.shallow = 0; | |
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure); | |
d.y = load_labels_paths(paths, n, labels, k); | |
if(m) free(paths); | |
return d; | |
} | |
*/ | |
data load_data_super(char **paths, int n, int m, int w, int h, int scale) | |
{ | |
if(m) paths = get_random_paths(paths, n, m); | |
data d = {0}; | |
d.shallow = 0; | |
int i; | |
d.X.rows = n; | |
d.X.vals = calloc(n, sizeof(float*)); | |
d.X.cols = w*h*3; | |
d.y.rows = n; | |
d.y.vals = calloc(n, sizeof(float*)); | |
d.y.cols = w*scale * h*scale * 3; | |
for(i = 0; i < n; ++i){ | |
image im = load_image_color(paths[i], 0, 0); | |
image crop = random_crop_image(im, w*scale, h*scale); | |
int flip = rand()%2; | |
if (flip) flip_image(crop); | |
image resize = resize_image(crop, w, h); | |
d.X.vals[i] = resize.data; | |
d.y.vals[i] = crop.data; | |
free_image(im); | |
} | |
if(m) free(paths); | |
return d; | |
} | |
data load_data_regression(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) | |
{ | |
if(m) paths = get_random_paths(paths, n, m); | |
data d = {0}; | |
d.shallow = 0; | |
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure, 0); | |
d.y = load_regression_labels_paths(paths, n, k); | |
if(m) free(paths); | |
return d; | |
} | |
data select_data(data *orig, int *inds) | |
{ | |
data d = {0}; | |
d.shallow = 1; | |
d.w = orig[0].w; | |
d.h = orig[0].h; | |
d.X.rows = orig[0].X.rows; | |
d.y.rows = orig[0].X.rows; | |
d.X.cols = orig[0].X.cols; | |
d.y.cols = orig[0].y.cols; | |
d.X.vals = calloc(orig[0].X.rows, sizeof(float *)); | |
d.y.vals = calloc(orig[0].y.rows, sizeof(float *)); | |
int i; | |
for(i = 0; i < d.X.rows; ++i){ | |
d.X.vals[i] = orig[inds[i]].X.vals[i]; | |
d.y.vals[i] = orig[inds[i]].y.vals[i]; | |
} | |
return d; | |
} | |
data *tile_data(data orig, int divs, int size) | |
{ | |
data *ds = calloc(divs*divs, sizeof(data)); | |
int i, j; | |
for(i = 0; i < divs*divs; ++i){ | |
data d; | |
d.shallow = 0; | |
d.w = orig.w/divs * size; | |
d.h = orig.h/divs * size; | |
d.X.rows = orig.X.rows; | |
d.X.cols = d.w*d.h*3; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.y = copy_matrix(orig.y); | |
for(j = 0; j < orig.X.rows; ++j){ | |
int x = (i%divs) * orig.w / divs - (d.w - orig.w/divs)/2; | |
int y = (i/divs) * orig.h / divs - (d.h - orig.h/divs)/2; | |
image im = float_to_image(orig.w, orig.h, 3, orig.X.vals[j]); | |
d.X.vals[j] = crop_image(im, x, y, d.w, d.h).data; | |
} | |
ds[i] = d; | |
} | |
return ds; | |
} | |
data resize_data(data orig, int w, int h) | |
{ | |
data d = {0}; | |
d.shallow = 0; | |
d.w = w; | |
d.h = h; | |
int i; | |
d.X.rows = orig.X.rows; | |
d.X.cols = w*h*3; | |
d.X.vals = calloc(d.X.rows, sizeof(float*)); | |
d.y = copy_matrix(orig.y); | |
for(i = 0; i < orig.X.rows; ++i){ | |
image im = float_to_image(orig.w, orig.h, 3, orig.X.vals[i]); | |
d.X.vals[i] = resize_image(im, w, h).data; | |
} | |
return d; | |
} | |
data load_data_augment(char **paths, int n, int m, char **labels, int k, tree *hierarchy, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure, int center) | |
{ | |
if(m) paths = get_random_paths(paths, n, m); | |
data d = {0}; | |
d.shallow = 0; | |
d.w=size; | |
d.h=size; | |
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure, center); | |
d.y = load_labels_paths(paths, n, labels, k, hierarchy); | |
if(m) free(paths); | |
return d; | |
} | |
data load_data_tag(char **paths, int n, int m, int k, int min, int max, int size, float angle, float aspect, float hue, float saturation, float exposure) | |
{ | |
if(m) paths = get_random_paths(paths, n, m); | |
data d = {0}; | |
d.w = size; | |
d.h = size; | |
d.shallow = 0; | |
d.X = load_image_augment_paths(paths, n, min, max, size, angle, aspect, hue, saturation, exposure, 0); | |
d.y = load_tags_paths(paths, n, k); | |
if(m) free(paths); | |
return d; | |
} | |
matrix concat_matrix(matrix m1, matrix m2) | |
{ | |
int i, count = 0; | |
matrix m; | |
m.cols = m1.cols; | |
m.rows = m1.rows+m2.rows; | |
m.vals = calloc(m1.rows + m2.rows, sizeof(float*)); | |
for(i = 0; i < m1.rows; ++i){ | |
m.vals[count++] = m1.vals[i]; | |
} | |
for(i = 0; i < m2.rows; ++i){ | |
m.vals[count++] = m2.vals[i]; | |
} | |
return m; | |
} | |
data concat_data(data d1, data d2) | |
{ | |
data d = {0}; | |
d.shallow = 1; | |
d.X = concat_matrix(d1.X, d2.X); | |
d.y = concat_matrix(d1.y, d2.y); | |
d.w = d1.w; | |
d.h = d1.h; | |
return d; | |
} | |
data concat_datas(data *d, int n) | |
{ | |
int i; | |
data out = {0}; | |
for(i = 0; i < n; ++i){ | |
data new = concat_data(d[i], out); | |
free_data(out); | |
out = new; | |
} | |
return out; | |
} | |
data load_categorical_data_csv(char *filename, int target, int k) | |
{ | |
data d = {0}; | |
d.shallow = 0; | |
matrix X = csv_to_matrix(filename); | |
float *truth_1d = pop_column(&X, target); | |
float **truth = one_hot_encode(truth_1d, X.rows, k); | |
matrix y; | |
y.rows = X.rows; | |
y.cols = k; | |
y.vals = truth; | |
d.X = X; | |
d.y = y; | |
free(truth_1d); | |
return d; | |
} | |
data load_cifar10_data(char *filename) | |
{ | |
data d = {0}; | |
d.shallow = 0; | |
long i,j; | |
matrix X = make_matrix(10000, 3072); | |
matrix y = make_matrix(10000, 10); | |
d.X = X; | |
d.y = y; | |
FILE *fp = fopen(filename, "rb"); | |
if(!fp) file_error(filename); | |
for(i = 0; i < 10000; ++i){ | |
unsigned char bytes[3073]; | |
fread(bytes, 1, 3073, fp); | |
int class = bytes[0]; | |
y.vals[i][class] = 1; | |
for(j = 0; j < X.cols; ++j){ | |
X.vals[i][j] = (double)bytes[j+1]; | |
} | |
} | |
scale_data_rows(d, 1./255); | |
//normalize_data_rows(d); | |
fclose(fp); | |
return d; | |
} | |
void get_random_batch(data d, int n, float *X, float *y) | |
{ | |
int j; | |
for(j = 0; j < n; ++j){ | |
int index = rand()%d.X.rows; | |
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); | |
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); | |
} | |
} | |
void get_next_batch(data d, int n, int offset, float *X, float *y) | |
{ | |
int j; | |
for(j = 0; j < n; ++j){ | |
int index = offset + j; | |
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); | |
if(y) memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); | |
} | |
} | |
void smooth_data(data d) | |
{ | |
int i, j; | |
float scale = 1. / d.y.cols; | |
float eps = .1; | |
for(i = 0; i < d.y.rows; ++i){ | |
for(j = 0; j < d.y.cols; ++j){ | |
d.y.vals[i][j] = eps * scale + (1-eps) * d.y.vals[i][j]; | |
} | |
} | |
} | |
data load_all_cifar10() | |
{ | |
data d = {0}; | |
d.shallow = 0; | |
int i,j,b; | |
matrix X = make_matrix(50000, 3072); | |
matrix y = make_matrix(50000, 10); | |
d.X = X; | |
d.y = y; | |
for(b = 0; b < 5; ++b){ | |
char buff[256]; | |
sprintf(buff, "data/cifar/cifar-10-batches-bin/data_batch_%d.bin", b+1); | |
FILE *fp = fopen(buff, "rb"); | |
if(!fp) file_error(buff); | |
for(i = 0; i < 10000; ++i){ | |
unsigned char bytes[3073]; | |
fread(bytes, 1, 3073, fp); | |
int class = bytes[0]; | |
y.vals[i+b*10000][class] = 1; | |
for(j = 0; j < X.cols; ++j){ | |
X.vals[i+b*10000][j] = (double)bytes[j+1]; | |
} | |
} | |
fclose(fp); | |
} | |
//normalize_data_rows(d); | |
scale_data_rows(d, 1./255); | |
smooth_data(d); | |
return d; | |
} | |
data load_go(char *filename) | |
{ | |
FILE *fp = fopen(filename, "rb"); | |
matrix X = make_matrix(3363059, 361); | |
matrix y = make_matrix(3363059, 361); | |
int row, col; | |
if(!fp) file_error(filename); | |
char *label; | |
int count = 0; | |
while((label = fgetl(fp))){ | |
int i; | |
if(count == X.rows){ | |
X = resize_matrix(X, count*2); | |
y = resize_matrix(y, count*2); | |
} | |
sscanf(label, "%d %d", &row, &col); | |
char *board = fgetl(fp); | |
int index = row*19 + col; | |
y.vals[count][index] = 1; | |
for(i = 0; i < 19*19; ++i){ | |
float val = 0; | |
if(board[i] == '1') val = 1; | |
else if(board[i] == '2') val = -1; | |
X.vals[count][i] = val; | |
} | |
++count; | |
free(label); | |
free(board); | |
} | |
X = resize_matrix(X, count); | |
y = resize_matrix(y, count); | |
data d = {0}; | |
d.shallow = 0; | |
d.X = X; | |
d.y = y; | |
fclose(fp); | |
return d; | |
} | |
void randomize_data(data d) | |
{ | |
int i; | |
for(i = d.X.rows-1; i > 0; --i){ | |
int index = rand()%i; | |
float *swap = d.X.vals[index]; | |
d.X.vals[index] = d.X.vals[i]; | |
d.X.vals[i] = swap; | |
swap = d.y.vals[index]; | |
d.y.vals[index] = d.y.vals[i]; | |
d.y.vals[i] = swap; | |
} | |
} | |
void scale_data_rows(data d, float s) | |
{ | |
int i; | |
for(i = 0; i < d.X.rows; ++i){ | |
scale_array(d.X.vals[i], d.X.cols, s); | |
} | |
} | |
void translate_data_rows(data d, float s) | |
{ | |
int i; | |
for(i = 0; i < d.X.rows; ++i){ | |
translate_array(d.X.vals[i], d.X.cols, s); | |
} | |
} | |
data copy_data(data d) | |
{ | |
data c = {0}; | |
c.w = d.w; | |
c.h = d.h; | |
c.shallow = 0; | |
c.num_boxes = d.num_boxes; | |
c.boxes = d.boxes; | |
c.X = copy_matrix(d.X); | |
c.y = copy_matrix(d.y); | |
return c; | |
} | |
void normalize_data_rows(data d) | |
{ | |
int i; | |
for(i = 0; i < d.X.rows; ++i){ | |
normalize_array(d.X.vals[i], d.X.cols); | |
} | |
} | |
data get_data_part(data d, int part, int total) | |
{ | |
data p = {0}; | |
p.shallow = 1; | |
p.X.rows = d.X.rows * (part + 1) / total - d.X.rows * part / total; | |
p.y.rows = d.y.rows * (part + 1) / total - d.y.rows * part / total; | |
p.X.cols = d.X.cols; | |
p.y.cols = d.y.cols; | |
p.X.vals = d.X.vals + d.X.rows * part / total; | |
p.y.vals = d.y.vals + d.y.rows * part / total; | |
return p; | |
} | |
data get_random_data(data d, int num) | |
{ | |
data r = {0}; | |
r.shallow = 1; | |
r.X.rows = num; | |
r.y.rows = num; | |
r.X.cols = d.X.cols; | |
r.y.cols = d.y.cols; | |
r.X.vals = calloc(num, sizeof(float *)); | |
r.y.vals = calloc(num, sizeof(float *)); | |
int i; | |
for(i = 0; i < num; ++i){ | |
int index = rand()%d.X.rows; | |
r.X.vals[i] = d.X.vals[index]; | |
r.y.vals[i] = d.y.vals[index]; | |
} | |
return r; | |
} | |
data *split_data(data d, int part, int total) | |
{ | |
data *split = calloc(2, sizeof(data)); | |
int i; | |
int start = part*d.X.rows/total; | |
int end = (part+1)*d.X.rows/total; | |
data train; | |
data test; | |
train.shallow = test.shallow = 1; | |
test.X.rows = test.y.rows = end-start; | |
train.X.rows = train.y.rows = d.X.rows - (end-start); | |
train.X.cols = test.X.cols = d.X.cols; | |
train.y.cols = test.y.cols = d.y.cols; | |
train.X.vals = calloc(train.X.rows, sizeof(float*)); | |
test.X.vals = calloc(test.X.rows, sizeof(float*)); | |
train.y.vals = calloc(train.y.rows, sizeof(float*)); | |
test.y.vals = calloc(test.y.rows, sizeof(float*)); | |
for(i = 0; i < start; ++i){ | |
train.X.vals[i] = d.X.vals[i]; | |
train.y.vals[i] = d.y.vals[i]; | |
} | |
for(i = start; i < end; ++i){ | |
test.X.vals[i-start] = d.X.vals[i]; | |
test.y.vals[i-start] = d.y.vals[i]; | |
} | |
for(i = end; i < d.X.rows; ++i){ | |
train.X.vals[i-(end-start)] = d.X.vals[i]; | |
train.y.vals[i-(end-start)] = d.y.vals[i]; | |
} | |
split[0] = train; | |
split[1] = test; | |
return split; | |
} | |