Spaces:
Running
Running
detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore) | |
{ | |
detection_layer l = {0}; | |
l.type = DETECTION; | |
l.n = n; | |
l.batch = batch; | |
l.inputs = inputs; | |
l.classes = classes; | |
l.coords = coords; | |
l.rescore = rescore; | |
l.side = side; | |
l.w = side; | |
l.h = side; | |
assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); | |
l.cost = calloc(1, sizeof(float)); | |
l.outputs = l.inputs; | |
l.truths = l.side*l.side*(1+l.coords+l.classes); | |
l.output = calloc(batch*l.outputs, sizeof(float)); | |
l.delta = calloc(batch*l.outputs, sizeof(float)); | |
l.forward = forward_detection_layer; | |
l.backward = backward_detection_layer; | |
l.forward_gpu = forward_detection_layer_gpu; | |
l.backward_gpu = backward_detection_layer_gpu; | |
l.output_gpu = cuda_make_array(l.output, batch*l.outputs); | |
l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); | |
fprintf(stderr, "Detection Layer\n"); | |
srand(0); | |
return l; | |
} | |
void forward_detection_layer(const detection_layer l, network net) | |
{ | |
int locations = l.side*l.side; | |
int i,j; | |
memcpy(l.output, net.input, l.outputs*l.batch*sizeof(float)); | |
//if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1); | |
int b; | |
if (l.softmax){ | |
for(b = 0; b < l.batch; ++b){ | |
int index = b*l.inputs; | |
for (i = 0; i < locations; ++i) { | |
int offset = i*l.classes; | |
softmax(l.output + index + offset, l.classes, 1, 1, | |
l.output + index + offset); | |
} | |
} | |
} | |
if(net.train){ | |
float avg_iou = 0; | |
float avg_cat = 0; | |
float avg_allcat = 0; | |
float avg_obj = 0; | |
float avg_anyobj = 0; | |
int count = 0; | |
*(l.cost) = 0; | |
int size = l.inputs * l.batch; | |
memset(l.delta, 0, size * sizeof(float)); | |
for (b = 0; b < l.batch; ++b){ | |
int index = b*l.inputs; | |
for (i = 0; i < locations; ++i) { | |
int truth_index = (b*locations + i)*(1+l.coords+l.classes); | |
int is_obj = net.truth[truth_index]; | |
for (j = 0; j < l.n; ++j) { | |
int p_index = index + locations*l.classes + i*l.n + j; | |
l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]); | |
*(l.cost) += l.noobject_scale*pow(l.output[p_index], 2); | |
avg_anyobj += l.output[p_index]; | |
} | |
int best_index = -1; | |
float best_iou = 0; | |
float best_rmse = 20; | |
if (!is_obj){ | |
continue; | |
} | |
int class_index = index + i*l.classes; | |
for(j = 0; j < l.classes; ++j) { | |
l.delta[class_index+j] = l.class_scale * (net.truth[truth_index+1+j] - l.output[class_index+j]); | |
*(l.cost) += l.class_scale * pow(net.truth[truth_index+1+j] - l.output[class_index+j], 2); | |
if(net.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; | |
avg_allcat += l.output[class_index+j]; | |
} | |
box truth = float_to_box(net.truth + truth_index + 1 + l.classes, 1); | |
truth.x /= l.side; | |
truth.y /= l.side; | |
for(j = 0; j < l.n; ++j){ | |
int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords; | |
box out = float_to_box(l.output + box_index, 1); | |
out.x /= l.side; | |
out.y /= l.side; | |
if (l.sqrt){ | |
out.w = out.w*out.w; | |
out.h = out.h*out.h; | |
} | |
float iou = box_iou(out, truth); | |
//iou = 0; | |
float rmse = box_rmse(out, truth); | |
if(best_iou > 0 || iou > 0){ | |
if(iou > best_iou){ | |
best_iou = iou; | |
best_index = j; | |
} | |
}else{ | |
if(rmse < best_rmse){ | |
best_rmse = rmse; | |
best_index = j; | |
} | |
} | |
} | |
if(l.forced){ | |
if(truth.w*truth.h < .1){ | |
best_index = 1; | |
}else{ | |
best_index = 0; | |
} | |
} | |
if(l.random && *(net.seen) < 64000){ | |
best_index = rand()%l.n; | |
} | |
int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; | |
int tbox_index = truth_index + 1 + l.classes; | |
box out = float_to_box(l.output + box_index, 1); | |
out.x /= l.side; | |
out.y /= l.side; | |
if (l.sqrt) { | |
out.w = out.w*out.w; | |
out.h = out.h*out.h; | |
} | |
float iou = box_iou(out, truth); | |
//printf("%d,", best_index); | |
int p_index = index + locations*l.classes + i*l.n + best_index; | |
*(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); | |
*(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); | |
avg_obj += l.output[p_index]; | |
l.delta[p_index] = l.object_scale * (1.-l.output[p_index]); | |
if(l.rescore){ | |
l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); | |
} | |
l.delta[box_index+0] = l.coord_scale*(net.truth[tbox_index + 0] - l.output[box_index + 0]); | |
l.delta[box_index+1] = l.coord_scale*(net.truth[tbox_index + 1] - l.output[box_index + 1]); | |
l.delta[box_index+2] = l.coord_scale*(net.truth[tbox_index + 2] - l.output[box_index + 2]); | |
l.delta[box_index+3] = l.coord_scale*(net.truth[tbox_index + 3] - l.output[box_index + 3]); | |
if(l.sqrt){ | |
l.delta[box_index+2] = l.coord_scale*(sqrt(net.truth[tbox_index + 2]) - l.output[box_index + 2]); | |
l.delta[box_index+3] = l.coord_scale*(sqrt(net.truth[tbox_index + 3]) - l.output[box_index + 3]); | |
} | |
*(l.cost) += pow(1-iou, 2); | |
avg_iou += iou; | |
++count; | |
} | |
} | |
if(0){ | |
float *costs = calloc(l.batch*locations*l.n, sizeof(float)); | |
for (b = 0; b < l.batch; ++b) { | |
int index = b*l.inputs; | |
for (i = 0; i < locations; ++i) { | |
for (j = 0; j < l.n; ++j) { | |
int p_index = index + locations*l.classes + i*l.n + j; | |
costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index]; | |
} | |
} | |
} | |
int indexes[100]; | |
top_k(costs, l.batch*locations*l.n, 100, indexes); | |
float cutoff = costs[indexes[99]]; | |
for (b = 0; b < l.batch; ++b) { | |
int index = b*l.inputs; | |
for (i = 0; i < locations; ++i) { | |
for (j = 0; j < l.n; ++j) { | |
int p_index = index + locations*l.classes + i*l.n + j; | |
if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0; | |
} | |
} | |
} | |
free(costs); | |
} | |
*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); | |
printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); | |
//if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); | |
} | |
} | |
void backward_detection_layer(const detection_layer l, network net) | |
{ | |
axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, net.delta, 1); | |
} | |
void get_detection_detections(layer l, int w, int h, float thresh, detection *dets) | |
{ | |
int i,j,n; | |
float *predictions = l.output; | |
//int per_cell = 5*num+classes; | |
for (i = 0; i < l.side*l.side; ++i){ | |
int row = i / l.side; | |
int col = i % l.side; | |
for(n = 0; n < l.n; ++n){ | |
int index = i*l.n + n; | |
int p_index = l.side*l.side*l.classes + i*l.n + n; | |
float scale = predictions[p_index]; | |
int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4; | |
box b; | |
b.x = (predictions[box_index + 0] + col) / l.side * w; | |
b.y = (predictions[box_index + 1] + row) / l.side * h; | |
b.w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w; | |
b.h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h; | |
dets[index].bbox = b; | |
dets[index].objectness = scale; | |
for(j = 0; j < l.classes; ++j){ | |
int class_index = i*l.classes; | |
float prob = scale*predictions[class_index+j]; | |
dets[index].prob[j] = (prob > thresh) ? prob : 0; | |
} | |
} | |
} | |
} | |
void forward_detection_layer_gpu(const detection_layer l, network net) | |
{ | |
if(!net.train){ | |
copy_gpu(l.batch*l.inputs, net.input_gpu, 1, l.output_gpu, 1); | |
return; | |
} | |
cuda_pull_array(net.input_gpu, net.input, l.batch*l.inputs); | |
forward_detection_layer(l, net); | |
cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); | |
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); | |
} | |
void backward_detection_layer_gpu(detection_layer l, network net) | |
{ | |
axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1); | |
//copy_gpu(l.batch*l.inputs, l.delta_gpu, 1, net.delta_gpu, 1); | |
} | |