Spaces:
Running
Running
void gemm_bin(int M, int N, int K, float ALPHA, | |
char *A, int lda, | |
float *B, int ldb, | |
float *C, int ldc) | |
{ | |
int i,j,k; | |
for(i = 0; i < M; ++i){ | |
for(k = 0; k < K; ++k){ | |
char A_PART = A[i*lda+k]; | |
if(A_PART){ | |
for(j = 0; j < N; ++j){ | |
C[i*ldc+j] += B[k*ldb+j]; | |
} | |
} else { | |
for(j = 0; j < N; ++j){ | |
C[i*ldc+j] -= B[k*ldb+j]; | |
} | |
} | |
} | |
} | |
} | |
float *random_matrix(int rows, int cols) | |
{ | |
int i; | |
float *m = calloc(rows*cols, sizeof(float)); | |
for(i = 0; i < rows*cols; ++i){ | |
m[i] = (float)rand()/RAND_MAX; | |
} | |
return m; | |
} | |
void time_random_matrix(int TA, int TB, int m, int k, int n) | |
{ | |
float *a; | |
if(!TA) a = random_matrix(m,k); | |
else a = random_matrix(k,m); | |
int lda = (!TA)?k:m; | |
float *b; | |
if(!TB) b = random_matrix(k,n); | |
else b = random_matrix(n,k); | |
int ldb = (!TB)?n:k; | |
float *c = random_matrix(m,n); | |
int i; | |
clock_t start = clock(), end; | |
for(i = 0; i<10; ++i){ | |
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); | |
} | |
end = clock(); | |
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); | |
free(a); | |
free(b); | |
free(c); | |
} | |
void gemm(int TA, int TB, int M, int N, int K, float ALPHA, | |
float *A, int lda, | |
float *B, int ldb, | |
float BETA, | |
float *C, int ldc) | |
{ | |
gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); | |
} | |
void gemm_nn(int M, int N, int K, float ALPHA, | |
float *A, int lda, | |
float *B, int ldb, | |
float *C, int ldc) | |
{ | |
int i,j,k; | |
for(i = 0; i < M; ++i){ | |
for(k = 0; k < K; ++k){ | |
register float A_PART = ALPHA*A[i*lda+k]; | |
for(j = 0; j < N; ++j){ | |
C[i*ldc+j] += A_PART*B[k*ldb+j]; | |
} | |
} | |
} | |
} | |
void gemm_nt(int M, int N, int K, float ALPHA, | |
float *A, int lda, | |
float *B, int ldb, | |
float *C, int ldc) | |
{ | |
int i,j,k; | |
for(i = 0; i < M; ++i){ | |
for(j = 0; j < N; ++j){ | |
register float sum = 0; | |
for(k = 0; k < K; ++k){ | |
sum += ALPHA*A[i*lda+k]*B[j*ldb + k]; | |
} | |
C[i*ldc+j] += sum; | |
} | |
} | |
} | |
void gemm_tn(int M, int N, int K, float ALPHA, | |
float *A, int lda, | |
float *B, int ldb, | |
float *C, int ldc) | |
{ | |
int i,j,k; | |
for(i = 0; i < M; ++i){ | |
for(k = 0; k < K; ++k){ | |
register float A_PART = ALPHA*A[k*lda+i]; | |
for(j = 0; j < N; ++j){ | |
C[i*ldc+j] += A_PART*B[k*ldb+j]; | |
} | |
} | |
} | |
} | |
void gemm_tt(int M, int N, int K, float ALPHA, | |
float *A, int lda, | |
float *B, int ldb, | |
float *C, int ldc) | |
{ | |
int i,j,k; | |
for(i = 0; i < M; ++i){ | |
for(j = 0; j < N; ++j){ | |
register float sum = 0; | |
for(k = 0; k < K; ++k){ | |
sum += ALPHA*A[i+k*lda]*B[k+j*ldb]; | |
} | |
C[i*ldc+j] += sum; | |
} | |
} | |
} | |
void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, | |
float *A, int lda, | |
float *B, int ldb, | |
float BETA, | |
float *C, int ldc) | |
{ | |
//printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); | |
int i, j; | |
for(i = 0; i < M; ++i){ | |
for(j = 0; j < N; ++j){ | |
C[i*ldc + j] *= BETA; | |
} | |
} | |
if(!TA && !TB) | |
gemm_nn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); | |
else if(TA && !TB) | |
gemm_tn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); | |
else if(!TA && TB) | |
gemm_nt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); | |
else | |
gemm_tt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); | |
} | |
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, | |
float *A_gpu, int lda, | |
float *B_gpu, int ldb, | |
float BETA, | |
float *C_gpu, int ldc) | |
{ | |
cublasHandle_t handle = blas_handle(); | |
cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), | |
(TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc); | |
check_error(status); | |
} | |
void time_gpu_random_matrix(int TA, int TB, int m, int k, int n) | |
{ | |
float *a; | |
if(!TA) a = random_matrix(m,k); | |
else a = random_matrix(k,m); | |
int lda = (!TA)?k:m; | |
float *b; | |
if(!TB) b = random_matrix(k,n); | |
else b = random_matrix(n,k); | |
int ldb = (!TB)?n:k; | |
float *c = random_matrix(m,n); | |
int i; | |
clock_t start = clock(), end; | |
for(i = 0; i<32; ++i){ | |
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); | |
} | |
end = clock(); | |
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); | |
free(a); | |
free(b); | |
free(c); | |
} | |
void time_gpu(int TA, int TB, int m, int k, int n) | |
{ | |
int iter = 10; | |
float *a = random_matrix(m,k); | |
float *b = random_matrix(k,n); | |
int lda = (!TA)?k:m; | |
int ldb = (!TB)?n:k; | |
float *c = random_matrix(m,n); | |
float *a_cl = cuda_make_array(a, m*k); | |
float *b_cl = cuda_make_array(b, k*n); | |
float *c_cl = cuda_make_array(c, m*n); | |
int i; | |
clock_t start = clock(), end; | |
for(i = 0; i<iter; ++i){ | |
gemm_gpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n); | |
cudaThreadSynchronize(); | |
} | |
double flop = ((double)m)*n*(2.*k + 2.)*iter; | |
double gflop = flop/pow(10., 9); | |
end = clock(); | |
double seconds = sec(end-start); | |
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds); | |
cuda_free(a_cl); | |
cuda_free(b_cl); | |
cuda_free(c_cl); | |
free(a); | |
free(b); | |
free(c); | |
} | |
void test_gpu_accuracy(int TA, int TB, int m, int k, int n) | |
{ | |
srand(0); | |
float *a; | |
if(!TA) a = random_matrix(m,k); | |
else a = random_matrix(k,m); | |
int lda = (!TA)?k:m; | |
float *b; | |
if(!TB) b = random_matrix(k,n); | |
else b = random_matrix(n,k); | |
int ldb = (!TB)?n:k; | |
float *c = random_matrix(m,n); | |
float *c_gpu = random_matrix(m,n); | |
memset(c, 0, m*n*sizeof(float)); | |
memset(c_gpu, 0, m*n*sizeof(float)); | |
int i; | |
//pm(m,k,b); | |
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n); | |
//printf("GPU\n"); | |
//pm(m, n, c_gpu); | |
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); | |
//printf("\n\nCPU\n"); | |
//pm(m, n, c); | |
double sse = 0; | |
for(i = 0; i < m*n; ++i) { | |
//printf("%f %f\n", c[i], c_gpu[i]); | |
sse += pow(c[i]-c_gpu[i], 2); | |
} | |
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n)); | |
free(a); | |
free(b); | |
free(c); | |
free(c_gpu); | |
} | |
int test_gpu_blas() | |
{ | |
/* | |
test_gpu_accuracy(0,0,10,576,75); | |
test_gpu_accuracy(0,0,17,10,10); | |
test_gpu_accuracy(1,0,17,10,10); | |
test_gpu_accuracy(0,1,17,10,10); | |
test_gpu_accuracy(1,1,17,10,10); | |
test_gpu_accuracy(0,0,1000,10,100); | |
test_gpu_accuracy(1,0,1000,10,100); | |
test_gpu_accuracy(0,1,1000,10,100); | |
test_gpu_accuracy(1,1,1000,10,100); | |
test_gpu_accuracy(0,0,10,10,10); | |
time_gpu(0,0,64,2916,363); | |
time_gpu(0,0,64,2916,363); | |
time_gpu(0,0,64,2916,363); | |
time_gpu(0,0,192,729,1600); | |
time_gpu(0,0,384,196,1728); | |
time_gpu(0,0,256,196,3456); | |
time_gpu(0,0,256,196,2304); | |
time_gpu(0,0,128,4096,12544); | |
time_gpu(0,0,128,4096,4096); | |
*/ | |
time_gpu(0,0,64,75,12544); | |
time_gpu(0,0,64,75,12544); | |
time_gpu(0,0,64,75,12544); | |
time_gpu(0,0,64,576,12544); | |
time_gpu(0,0,256,2304,784); | |
time_gpu(1,1,2304,256,784); | |
time_gpu(0,0,512,4608,196); | |
time_gpu(1,1,4608,512,196); | |
return 0; | |
} | |