Spaces:
Runtime error
Runtime error
minor
Browse files
app.py
CHANGED
@@ -58,13 +58,13 @@ with st.sidebar:
|
|
58 |
chunk_overlap = st.number_input("Chunk overlap", value=def_chunk_overlap, step=10, placeholder=def_chunk_overlap, disabled=disabled)
|
59 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
60 |
splits = text_splitter.split_documents(docs)
|
61 |
-
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings()
|
62 |
if chunk_size != def_chunk_size | chunk_overlap != def_chunk_overlap:
|
63 |
splits = text_splitter.split_documents(docs)
|
64 |
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
|
65 |
print("Created new vectordb for this session.")
|
66 |
else:
|
67 |
-
vectorstore = Chroma.from_documents(documents=docs, embedding=OpenAIEmbeddings()
|
68 |
print("Used vectordb with all blog articles.")
|
69 |
|
70 |
|
@@ -132,16 +132,15 @@ def click_button(prompt):
|
|
132 |
|
133 |
c = st.container()
|
134 |
c.write("Beispielfragen")
|
135 |
-
col1, col2, col3 = c.columns(3)
|
136 |
if data_source == 'Blog articles':
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
elif data_source == 'FAQ':
|
143 |
examples = ['Wie komme ich an meinen PDF-Report?', 'Wer steckt hinter den Kurs-Inhalten?', 'Wozu dient der Check-Out?']
|
144 |
-
for i, col in enumerate(c.columns(
|
145 |
question = examples[i]
|
146 |
col.button(question, on_click=click_button, args=[question])
|
147 |
|
|
|
58 |
chunk_overlap = st.number_input("Chunk overlap", value=def_chunk_overlap, step=10, placeholder=def_chunk_overlap, disabled=disabled)
|
59 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
60 |
splits = text_splitter.split_documents(docs)
|
61 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
|
62 |
if chunk_size != def_chunk_size | chunk_overlap != def_chunk_overlap:
|
63 |
splits = text_splitter.split_documents(docs)
|
64 |
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
|
65 |
print("Created new vectordb for this session.")
|
66 |
else:
|
67 |
+
vectorstore = Chroma.from_documents(documents=docs, embedding=OpenAIEmbeddings())
|
68 |
print("Used vectordb with all blog articles.")
|
69 |
|
70 |
|
|
|
132 |
|
133 |
c = st.container()
|
134 |
c.write("Beispielfragen")
|
|
|
135 |
if data_source == 'Blog articles':
|
136 |
+
examples = ['Was ist Pacing?', 'Wie funktioniert die Wiedereingliederung?', 'Sollte ich eine Reha machen?']
|
137 |
+
for i, col in enumerate(c.columns(len(examples))):
|
138 |
+
question = examples[i]
|
139 |
+
col.button(question, on_click=click_button, args=[question])
|
140 |
+
|
141 |
elif data_source == 'FAQ':
|
142 |
examples = ['Wie komme ich an meinen PDF-Report?', 'Wer steckt hinter den Kurs-Inhalten?', 'Wozu dient der Check-Out?']
|
143 |
+
for i, col in enumerate(c.columns(len(examples))):
|
144 |
question = examples[i]
|
145 |
col.button(question, on_click=click_button, args=[question])
|
146 |
|