import gradio as gr import pandas as pd import json from langchain.document_loaders import DataFrameLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain import HuggingFacePipeline from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from trafilatura import fetch_url, extract from trafilatura.spider import focused_crawler from trafilatura.settings import use_config def loading_website(): return "Loading..." def url_changes(url, pages_to_visit, urls_to_scrape, repo_id): to_visit, links = focused_crawler(url, max_seen_urls=pages_to_visit, max_known_urls=urls_to_scrape) print(f"{len(links)} to be crawled") config = use_config() config.set("DEFAULT", "EXTRACTION_TIMEOUT", "0") results_df = pd.DataFrame() for url in links: downloaded = fetch_url(url) if downloaded: result = extract(downloaded, output_format='json', config=config) result = json.loads(result) results_df = pd.concat([results_df, pd.DataFrame.from_records([result])]) results_df.to_csv("./data.csv") df = pd.read_csv("./data.csv") loader = DataFrameLoader(df, page_content_column="text") documents = loader.load() print(f"{len(documents)} documents loaded") text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) print(f"documents splitted into {len(texts)} chunks") embeddings = SentenceTransformerEmbeddings(model_name="jhgan/ko-sroberta-multitask") persist_directory = './vector_db' db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory) retriever = db.as_retriever() MODEL = 'beomi/KoAlpaca-Polyglot-5.8B' model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype="auto", ) model.eval() pipe = pipeline( 'text-generation', model=model, tokenizer=MODEL, max_length=512, temperature=0, top_p=0.95, repetition_penalty=1.15 ) llm = HuggingFacePipeline(pipeline=pipe) global qa qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) return "Ready" def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history): response = infer(history[-1][0]) history[-1][1] = response['result'] return history def infer(question): query = question result = qa({"query": query}) return result css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """

Chat with your website

Enter target URL, click the "Load website to LangChain" button

""" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.HTML(title) with gr.Column(): target_url = gr.Textbox(label="Load URL", placeholder="Enter target URL here. EX: https://www.penta.co.kr/") #pdf_doc = gr.File(label="Load URL", file_types=['.pdf'], type="file") repo_id = gr.Dropdown(label="LLM", choices=["google/flan-ul2", "OpenAssistant/oasst-sft-1-pythia-12b", "beomi/KoAlpaca-Polyglot-12.8B"], value="google/flan-ul2") with gr.Row(): langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False) load_pdf = gr.Button("Load website to langchain") chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ") submit_btn = gr.Button("Send message") #load_pdf.click(loading_pdf, None, langchain_status, queue=False) repo_id.change(url_changes, inputs=[target_url, gr.Number(value=5, visible=False), gr.Number(value=50, visible=False), repo_id], outputs=[langchain_status], queue=False) load_pdf.click(url_changes, inputs=[target_url, gr.Number(value=5, visible=False), gr.Number(value=50, visible=False), repo_id], outputs=[langchain_status], queue=False) question.submit(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then( bot, chatbot, chatbot ) demo.launch()