Spaces:
Sleeping
Sleeping
import gradio as gr | |
from sentence_transformers import SentenceTransformer, util | |
import openai | |
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Initialize paths and model identifiers for easy configuration and maintenance | |
filename = "output_topic_details.txt" # Path to the file storing chess-specific details | |
retrieval_model_name = 'output/sentence-transformer-finetuned/' | |
openai.api_key = os.environ["OPENAI_API_KEY"] | |
system_message = "You are an assistant specialized in taking my paragraph of complaints and distilling it into distinct to do list items exlusively from the user's input. You will then output those items in a list format." | |
# Initial system message to set the behavior of the assistant | |
messages = [{"role": "system", "content": system_message}] | |
# Attempt to load the necessary models and provide feedback on success or failure | |
try: | |
retrieval_model = SentenceTransformer(retrieval_model_name) | |
print("Models loaded successfully.") | |
except Exception as e: | |
print(f"Failed to load models: {e}") | |
def load_and_preprocess_text(filename): | |
""" | |
Load and preprocess text from a file, removing empty lines and stripping whitespace. | |
""" | |
try: | |
with open(filename, 'r', encoding='utf-8') as file: | |
segments = [line.strip() for line in file if line.strip()] | |
print("Text loaded and preprocessed successfully.") | |
return segments | |
except Exception as e: | |
print(f"Failed to load or preprocess text: {e}") | |
return [] | |
segments = load_and_preprocess_text(filename) | |
def find_relevant_segment(user_query, segments): | |
""" | |
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings. | |
This version finds the best match based on the content of the query. | |
""" | |
try: | |
# Lowercase the query for better matching | |
lower_query = user_query.lower() | |
# Encode the query and the segments | |
query_embedding = retrieval_model.encode(lower_query) | |
segment_embeddings = retrieval_model.encode(segments) | |
# Compute cosine similarities between the query and the segments | |
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0] | |
# Find the index of the most similar segment | |
best_idx = similarities.argmax() | |
# Return the most relevant segment | |
return segments[best_idx] | |
except Exception as e: | |
print(f"Error in finding relevant segment: {e}") | |
return "" | |
def generate_response(user_query, relevant_segment): | |
""" | |
Generate a response emphasizing the bot's capability in providing scheduling information. | |
""" | |
try: | |
user_message = f"Here's your generated to do list: {relevant_segment}" | |
# Append user's message to messages list | |
messages.append({"role": "user", "content": user_message}) | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=messages, | |
max_tokens=200, | |
temperature=0.2, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0 | |
) | |
# Extract the response text | |
output_text = response['choices'][0]['message']['content'].strip() | |
# Append assistant's message to messages list for context | |
messages.append({"role": "assistant", "content": output_text}) | |
return output_text | |
except Exception as e: | |
print(f"Error in generating response: {e}") | |
return f"Error in generating response: {e}" | |
def query_model(question): | |
""" | |
Process a question, find relevant information, and generate a response. | |
""" | |
if question == "": | |
return "Hello! I am your time manager Timify! Please enter what you need to do today." | |
relevant_segment = find_relevant_segment(question, segments) | |
if not relevant_segment: | |
return "Could not find specific information. Please refine your requirements." | |
response = generate_response(question, relevant_segment) | |
return response | |
# Define the welcome message and specific topics the chatbot can provide information about | |
welcome_message = """ | |
★Welcome to Timify!★ | |
## I am your AI chatbot driven to help you with all your scheduling needs! | |
""" | |
topics = """ | |
### Feel free to ask about of the questions below: | |
- How does Timify work? | |
- Create me a to-do list | |
- Ask me to create a daily schedule | |
- Ask me to create a weekly schedule | |
""" | |
# Setup the Gradio Blocks interface with custom layout components | |
with gr.Blocks(theme='freddyaboulton/test-blue') as demo: | |
gr.Markdown(welcome_message) # Display the formatted welcome message | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(topics) # Show the topics on the left side | |
with gr.Row(): | |
with gr.Column(): | |
question = gr.Textbox(label="Your question", placeholder="What do you want to ask Timify about?") | |
answer = gr.Textbox(label="Timify Response", placeholder="Timify ChatBot will respond here...", interactive=False, lines=10) | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=query_model, inputs=question, outputs=answer) | |
# Launch the Gradio app to allow user interaction | |
demo.launch(share=True) | |