ariG23498 HF staff commited on
Commit
6d4f793
·
verified ·
1 Parent(s): f71e4f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -19
app.py CHANGED
@@ -1,32 +1,59 @@
1
  import gradio as gr
2
  from transformers import pipeline
3
 
4
- # Function for image classification
5
  def classify(image, model_name):
6
  try:
7
- # Load the pipeline with the given model name
8
  pipe = pipeline("image-classification", model=model_name)
9
- # Perform image classification
10
  results = pipe(image)
11
  return {result["label"]: round(result["score"], 2) for result in results}
12
  except Exception as e:
13
- # Handle errors gracefully, e.g., invalid model names
14
  return {"Error": str(e)}
15
 
16
- # Gradio Interface
17
- demo = gr.Interface(
18
- fn=classify,
19
- inputs=[
20
- gr.Image(type="pil", label="Upload an Image"),
21
- gr.Textbox(label="Enter timm Model Name", placeholder="e.g., timm/mobilenetv3_large_100.ra_in1k"),
22
- ],
23
- outputs=gr.Label(num_top_classes=3, label="Top Predictions"),
24
- title="Custom timm Model Image Classifier",
25
- description="Enter a timm model name from Hugging Face, upload an image, and get predictions.",
26
- examples=[
27
- ["cat.jpg", "timm/mobilenetv3_small_100.lamb_in1k"],
28
- ["cat.jpg", "timm/resnet50.a1_in1k"],
29
- ],
30
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  demo.launch()
 
1
  import gradio as gr
2
  from transformers import pipeline
3
 
 
4
  def classify(image, model_name):
5
  try:
 
6
  pipe = pipeline("image-classification", model=model_name)
 
7
  results = pipe(image)
8
  return {result["label"]: round(result["score"], 2) for result in results}
9
  except Exception as e:
 
10
  return {"Error": str(e)}
11
 
12
+ # Gradio Blocks Interface
13
+ with gr.Blocks() as demo:
14
+ gr.Markdown(
15
+ """
16
+ # Custom timm Model Image Classifier 🚀
17
+
18
+ Explore the power of [timm](https://github.com/rwightman/pytorch-image-models) models for image classification using
19
+ the Hugging Face [Transformers pipeline](https://huggingface.co/docs/transformers/main_classes/pipelines).
20
+
21
+ With just a few lines of code, you can load any timm model hosted on the Hugging Face Hub and classify images effortlessly.
22
+ This application demonstrates how you can use the pipeline API to create a powerful yet minimalistic image classification tool.
23
+
24
+ ## How to Use
25
+
26
+ 1. Upload an image or use one of the provided examples.
27
+ 2. Enter a valid timm model name from the Hugging Face Hub (e.g., `timm/resnet50.a1_in1k`).
28
+ 3. View the top predictions and confidence scores!
29
+ """
30
+ )
31
+
32
+ with gr.Row():
33
+ with gr.Column():
34
+ image_input = gr.Image(type="pil", label="Upload an Image")
35
+ model_name_input = gr.Textbox(
36
+ label="Enter timm Model Name",
37
+ placeholder="e.g., timm/mobilenetv3_large_100.ra_in1k"
38
+ )
39
+ with gr.Column():
40
+ output_label = gr.Label(num_top_classes=3, label="Top Predictions")
41
 
42
+ gr.Examples(
43
+ examples=[
44
+ ["cat.jpg", "timm/mobilenetv3_small_100.lamb_in1k"],
45
+ ["cat.jpg", "timm/resnet50.a1_in1k"],
46
+ ],
47
+ inputs=[image_input, model_name_input]
48
+ )
49
+ submit_button = gr.Button("Classify")
50
+ submit_button.click(fn=classify, inputs=[image_input, model_name_input], outputs=output_label)
51
+
52
+ gr.Markdown(
53
+ """
54
+ ## Learn More
55
+ - Check out the implementation in the `app.py` file to see how easy it is to integrate timm models.
56
+ - Dive into the [official blog post on timm integration](https://huggingface.co/blog/timm-transformers) for more insights.
57
+ """
58
+ )
59
  demo.launch()