ariG23498 HF staff commited on
Commit
cf64e05
·
verified ·
1 Parent(s): 68e031b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import list_models
2
+ import gradio as gr
3
+ from transformers import pipeline
4
+
5
+ # Fetch timm models from Hugging Face Hub
6
+ timm_models = list_models(filter="timm", sort="downloads", limit=20) # Fetch top 20 based on downloads
7
+ model_ids = [model.modelId for model in timm_models]
8
+
9
+ # Initialize a pipeline with a default model
10
+ default_model = model_ids[0]
11
+ pipe = pipeline("image-classification", model=default_model)
12
+
13
+ # Function for classification
14
+ def classify(image, model_name):
15
+ pipe.model = model_name # Update model dynamically
16
+ results = pipe(image)
17
+ return {result["label"]: round(result["score"], 2) for result in results}
18
+
19
+ # Gradio Interface
20
+ demo = gr.Interface(
21
+ fn=classify,
22
+ inputs=[
23
+ gr.Image(type="pil", label="Upload an Image"),
24
+ gr.Dropdown(choices=model_ids, label="Select timm Model", value=default_model)
25
+ ],
26
+ outputs=gr.Label(num_top_classes=3, label="Top Predictions"),
27
+ title="timm Model Image Classifier",
28
+ description="Select a timm model and upload an image for classification."
29
+ )
30
+
31
+ demo.launch()