timothy-geiger commited on
Commit
0a08063
·
verified ·
1 Parent(s): 06fc47e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -11,11 +11,8 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("JFuellem/speecht5_finetuned_voxpopuli_de")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("JFuellem/speecht5_finetuned_voxpopuli_de").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
@@ -27,9 +24,12 @@ def translate(audio):
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
11
  # load speech translation checkpoint
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
15
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
 
 
 
16
 
17
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
18
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
24
 
25
 
26
  def synthesise(text):
27
+ inputs = tokenizer(text=text, return_tensors="pt")
28
+
29
+ with torch.no_grad():
30
+ outputs = model(**inputs)
31
+
32
+ return outputs.waveform[0]
33
 
34
 
35
  def speech_to_speech_translation(audio):