File size: 10,776 Bytes
e518bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7780f0d
e518bda
 
 
 
 
 
 
 
 
 
 
 
7780f0d
e518bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39cb733
e518bda
 
 
 
 
 
39cb733
e518bda
 
 
 
 
 
39cb733
e518bda
 
 
 
39cb733
e518bda
 
 
 
 
 
 
 
 
 
 
 
 
7780f0d
e518bda
 
 
7780f0d
e518bda
 
 
39cb733
 
e518bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7780f0d
e518bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31331c5
e518bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079056
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import gradio as gr
import torch
import os
from diffusers import StableDiffusionPipeline

def dummy(images, **kwargs):
    return images, False

model_id = "timothepearce/gina-the-cat"

AUTH_TOKEN = os.environ.get('AUTH_TOKEN')
if not AUTH_TOKEN:
    with open('/root/.huggingface/token') as f:
        lines = f.readlines()
        AUTH_TOKEN = lines[0]

device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
    print('Nvidia GPU detected!')
    pipe = StableDiffusionPipeline.from_pretrained(
        model_id,
        use_auth_token=AUTH_TOKEN,
        torch_dtype=torch.float16,
    )
else:
    print('No Nvidia GPU in system!')
    pipe = StableDiffusionPipeline.from_pretrained(
        model_id,
        use_auth_token=AUTH_TOKEN
    )

pipe.to(device)
pipe.safety_checker = dummy
#torch.backends.cudnn.benchmark = True

def infer(prompt="", samples=4, steps=50, scale=7.5, seed=34354):
    generator = torch.Generator(device=device).manual_seed(seed)
    return pipe(
        [prompt] * samples,
        num_inference_steps=steps,
        guidance_scale=scale,
        generator=generator,
    ).images


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
        }
        #share-btn * {
            all: unset;
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
"""

block = gr.Blocks(css=css)

examples = [
    [
        'A sqs cat facing the Eiffel Tower',
#        4,
#        45,
#        7.5,
#        1024,
    ],
    [
        'A sqs cat in the Acropolis',
#        4,
#        45,
#        7,
#        1024,
    ],
    [
        'A sqs cat close to the Taj Mahal',
#        4,
#        45,
#        7,
#        1024,
    ]
]


with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                  margin-top: 3px;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  😻 Gina the cat (Stable Diffusion v1-5 fine-tuned)
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                Gina the cat (Stable Diffusion v1-5 fine-tuned) is a state of the art text-to-image model that generates
                images of Gina the cat from text.
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                text = gr.Textbox(
                    label="Enter your prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    elem_id="prompt-text-input",
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Generate a Gina!").style(
                    margin=False,
                    rounded=(False, True, True, False),
                    full_width=False,
                )

        gallery = gr.Gallery(
            label="Generated images",
            show_label=False,
            elem_id="gallery"
        ).style(grid=[2], height="auto")

        with gr.Group(elem_id="container-advanced-btns"):
            advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")

        with gr.Row(elem_id="advanced-options"):
            samples = gr.Slider(label="Images", minimum=1, maximum=4, value=4, step=1)
            steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=50, step=1)
            scale = gr.Slider(
                label="Guidance Scale", minimum=0, maximum=50, value=7.5, step=0.1
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=2147483647,
                step=1,
                randomize=True,
            )

        ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery], cache_examples=False)
        ex.dataset.headers = [""]

        text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery])
        btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery])

        advanced_button.click(
            None,
            [],
            text,
            _js="""
            () => {
                var appDom = document.querySelector("body > gradio-app");
                var options = appDom.querySelector("#advanced-options")
                if (options == null) {options = appDom.shadowRoot.querySelector("#advanced-options")}
                options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
            }""",
        )
        gr.HTML(
            """
                <div class="footer">
                    <p>Model by <a href="https://huggingface.co/timothepearce" style="text-decoration: underline;" target="_blank">CompVis</a> and <a href="https://huggingface.co/timothepearce" style="text-decoration: underline;" target="_blank">Timothé Pearce</a> - Gradio Demo by 🤗 Hugging Face
                    </p>
                </div>
                <div class="acknowledgments">
                    <p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
                    <p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
               </div>
           """
        )

block.queue(max_size=10).launch(share=False, enable_queue=True)