Spaces:
Sleeping
Sleeping
Fix #14 app.py
Browse files
app.py
CHANGED
@@ -13,31 +13,24 @@ from huggingface_hub import hf_hub_download
|
|
13 |
class ResBlk(nn.Module):
|
14 |
def __init__(self, dim_in, dim_out, normalize=False, downsample=False):
|
15 |
super().__init__()
|
16 |
-
self.
|
17 |
-
self.norm1 = nn.InstanceNorm2d(dim_out, affine=True) if normalize else None
|
18 |
-
self.relu1 = nn.ReLU(inplace=True)
|
19 |
-
self.conv2 = nn.Conv2d(dim_out, dim_out, 3, 1, 1)
|
20 |
-
self.norm2 = nn.InstanceNorm2d(dim_out, affine=True) if normalize else None
|
21 |
-
self.relu2 = nn.ReLU(inplace=True)
|
22 |
self.downsample = downsample
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def forward(self, x):
|
27 |
-
|
28 |
-
out = self.
|
29 |
-
|
30 |
-
|
31 |
-
out
|
32 |
-
out = self.conv2(out)
|
33 |
-
if self.norm2:
|
34 |
-
out = self.norm2(out)
|
35 |
-
out = self.relu2(out)
|
36 |
-
if self.downsample:
|
37 |
-
out = self.avg_pool(out)
|
38 |
-
residual = self.avg_pool(residual)
|
39 |
-
out = out + residual
|
40 |
-
return out
|
41 |
|
42 |
class AdainResBlk(nn.Module):
|
43 |
def __init__(self, dim_in, dim_out, style_dim=64, w_hpf=1, upsample=False):
|
@@ -109,8 +102,8 @@ class MappingNetwork(nn.Module):
|
|
109 |
for layer in self.unshared:
|
110 |
out += [layer(h)]
|
111 |
out = torch.stack(out, dim=1) # (batch, num_domains, style_dim)
|
112 |
-
idx = torch.
|
113 |
-
s = out
|
114 |
return s
|
115 |
|
116 |
class StyleEncoder(nn.Module):
|
@@ -177,8 +170,8 @@ class Generator(nn.Module):
|
|
177 |
|
178 |
# FUNCIÓN PARA CARGAR EL MODELO
|
179 |
def load_pretrained_model(ckpt_path, img_size=256, style_dim=64, num_domains=3, device='cpu'):
|
180 |
-
num_domains_mappin =
|
181 |
-
latent_dim_for_mapping =
|
182 |
G = Generator(img_size, style_dim).to(device)
|
183 |
M = MappingNetwork(latent_dim_for_mapping, style_dim, num_domains).to(device)
|
184 |
S = StyleEncoder(img_size, style_dim, num_domains).to(device)
|
@@ -235,7 +228,7 @@ if __name__ == '__main__':
|
|
235 |
checkpoint_path = 'iter/12500_nets_ema.ckpt'
|
236 |
img_size = 128
|
237 |
style_dim = 64
|
238 |
-
num_domains =
|
239 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
240 |
|
241 |
try:
|
|
|
13 |
class ResBlk(nn.Module):
|
14 |
def __init__(self, dim_in, dim_out, normalize=False, downsample=False):
|
15 |
super().__init__()
|
16 |
+
self.normalize = normalize
|
|
|
|
|
|
|
|
|
|
|
17 |
self.downsample = downsample
|
18 |
+
self.main = nn.Sequential(
|
19 |
+
nn.Conv2d(dim_in, dim_out, 3, 1, 1),
|
20 |
+
nn.InstanceNorm2d(dim_out, affine=True) if normalize else nn.Identity(),
|
21 |
+
nn.ReLU(inplace=True),
|
22 |
+
nn.Conv2d(dim_out, dim_out, 3, 1, 1),
|
23 |
+
nn.InstanceNorm2d(dim_out, affine=True) if normalize else nn.Identity()
|
24 |
+
)
|
25 |
+
self.downsample_layer = nn.AvgPool2d(2) if downsample else nn.Identity()
|
26 |
+
self.skip = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)
|
27 |
|
28 |
def forward(self, x):
|
29 |
+
out = self.main(x)
|
30 |
+
out = self.downsample_layer(out)
|
31 |
+
skip = self.skip(x)
|
32 |
+
skip = self.downsample_layer(skip)
|
33 |
+
return (out + skip) / math.sqrt(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
class AdainResBlk(nn.Module):
|
36 |
def __init__(self, dim_in, dim_out, style_dim=64, w_hpf=1, upsample=False):
|
|
|
102 |
for layer in self.unshared:
|
103 |
out += [layer(h)]
|
104 |
out = torch.stack(out, dim=1) # (batch, num_domains, style_dim)
|
105 |
+
idx = torch.LongTensor(range(y.size(0))).unsqueeze(1).to(y.device)
|
106 |
+
s = torch.gather(out, 1, idx.unsqueeze(2).expand(-1, -1, out.size(2))).squeeze(1)
|
107 |
return s
|
108 |
|
109 |
class StyleEncoder(nn.Module):
|
|
|
170 |
|
171 |
# FUNCIÓN PARA CARGAR EL MODELO
|
172 |
def load_pretrained_model(ckpt_path, img_size=256, style_dim=64, num_domains=3, device='cpu'):
|
173 |
+
num_domains_mappin = 2
|
174 |
+
latent_dim_for_mapping = 14
|
175 |
G = Generator(img_size, style_dim).to(device)
|
176 |
M = MappingNetwork(latent_dim_for_mapping, style_dim, num_domains).to(device)
|
177 |
S = StyleEncoder(img_size, style_dim, num_domains).to(device)
|
|
|
228 |
checkpoint_path = 'iter/12500_nets_ema.ckpt'
|
229 |
img_size = 128
|
230 |
style_dim = 64
|
231 |
+
num_domains = 2
|
232 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
233 |
|
234 |
try:
|