Spaces:
Sleeping
Sleeping
Fix #12 app.py
Browse files
app.py
CHANGED
@@ -102,8 +102,8 @@ class MappingNetwork(nn.Module):
|
|
102 |
for layer in self.unshared:
|
103 |
out += [layer(h)]
|
104 |
out = torch.stack(out, dim=1) # (batch, num_domains, style_dim)
|
105 |
-
idx = torch.
|
106 |
-
s =
|
107 |
return s
|
108 |
|
109 |
class StyleEncoder(nn.Module):
|
@@ -170,8 +170,8 @@ class Generator(nn.Module):
|
|
170 |
|
171 |
# FUNCIÓN PARA CARGAR EL MODELO
|
172 |
def load_pretrained_model(ckpt_path, img_size=256, style_dim=64, num_domains=3, device='cpu'):
|
173 |
-
num_domains_mappin =
|
174 |
-
latent_dim_for_mapping =
|
175 |
G = Generator(img_size, style_dim).to(device)
|
176 |
M = MappingNetwork(latent_dim_for_mapping, style_dim, num_domains).to(device)
|
177 |
S = StyleEncoder(img_size, style_dim, num_domains).to(device)
|
@@ -228,7 +228,7 @@ if __name__ == '__main__':
|
|
228 |
checkpoint_path = 'iter/12500_nets_ema.ckpt'
|
229 |
img_size = 128
|
230 |
style_dim = 64
|
231 |
-
num_domains =
|
232 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
233 |
|
234 |
try:
|
|
|
102 |
for layer in self.unshared:
|
103 |
out += [layer(h)]
|
104 |
out = torch.stack(out, dim=1) # (batch, num_domains, style_dim)
|
105 |
+
idx = torch.arange(y.size(0)).to(y.device)
|
106 |
+
s = out[idx, y]
|
107 |
return s
|
108 |
|
109 |
class StyleEncoder(nn.Module):
|
|
|
170 |
|
171 |
# FUNCIÓN PARA CARGAR EL MODELO
|
172 |
def load_pretrained_model(ckpt_path, img_size=256, style_dim=64, num_domains=3, device='cpu'):
|
173 |
+
num_domains_mappin = 3
|
174 |
+
latent_dim_for_mapping = 13
|
175 |
G = Generator(img_size, style_dim).to(device)
|
176 |
M = MappingNetwork(latent_dim_for_mapping, style_dim, num_domains).to(device)
|
177 |
S = StyleEncoder(img_size, style_dim, num_domains).to(device)
|
|
|
228 |
checkpoint_path = 'iter/12500_nets_ema.ckpt'
|
229 |
img_size = 128
|
230 |
style_dim = 64
|
231 |
+
num_domains = 3
|
232 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
233 |
|
234 |
try:
|