Spaces:
Sleeping
Sleeping
Fix #22
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ import random
|
|
10 |
from torchvision.utils import save_image
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
|
|
13 |
|
14 |
# Asegúrate de que las funciones necesarias estén definidas (si no lo están ya)
|
15 |
def resize(img, size):
|
@@ -251,7 +252,7 @@ class Solver(object):
|
|
251 |
print(f"Error al cargar el checkpoint: {e}.")
|
252 |
raise Exception(f"Error al cargar el checkpoint: {e}")
|
253 |
|
254 |
-
def transfer_style(self, source_image, reference_image):
|
255 |
# Asegúrate de que los modelos estén en modo de evaluación
|
256 |
self.G.eval()
|
257 |
self.S.eval()
|
@@ -264,17 +265,14 @@ class Solver(object):
|
|
264 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
265 |
])
|
266 |
# Convertir a PIL image antes de la transformación
|
267 |
-
source_image = Image.
|
268 |
-
reference_image = Image.
|
269 |
|
270 |
source_image = transform(source_image).unsqueeze(0).to(self.device)
|
271 |
reference_image = transform(reference_image).unsqueeze(0).to(self.device)
|
272 |
|
273 |
-
# Crear el tensor de dominio objetivo
|
274 |
-
# target_domain = torch.tensor([target_domain_index]).to(self.device) # Eliminado
|
275 |
-
|
276 |
# Codificar el estilo de la imagen de referencia
|
277 |
-
s_ref = self.S(reference_image, torch.tensor([0]).to(self.device))
|
278 |
|
279 |
# Generar la imagen con el estilo transferido
|
280 |
generated_image = self.G(source_image, s_ref)
|
@@ -284,7 +282,7 @@ class Solver(object):
|
|
284 |
return generated_image
|
285 |
|
286 |
# Función principal para la inferencia
|
287 |
-
def main(source_image, reference_image, checkpoint_path, args):
|
288 |
if source_image is None or reference_image is None:
|
289 |
raise gr.Error("Por favor, proporciona ambas imágenes (fuente y referencia).")
|
290 |
|
@@ -294,37 +292,35 @@ def main(source_image, reference_image, checkpoint_path, args): # Eliminado targ
|
|
294 |
solver.load_checkpoint(checkpoint_path)
|
295 |
|
296 |
# Realizar la transferencia de estilo
|
297 |
-
generated_image = solver.transfer_style(source_image, reference_image)
|
298 |
return generated_image
|
299 |
|
300 |
def gradio_interface():
|
301 |
# Definir los argumentos (ajustados para la inferencia)
|
302 |
args = SimpleNamespace(
|
303 |
-
img_size=128,
|
304 |
-
num_domains=3,
|
305 |
-
latent_dim=16,
|
306 |
style_dim=64,
|
307 |
-
num_workers=0,
|
308 |
seed=8365,
|
309 |
)
|
310 |
|
311 |
# Ruta al checkpoint
|
312 |
-
checkpoint_path = "iter/
|
313 |
|
314 |
# Crear la interfaz de Gradio
|
315 |
inputs = [
|
316 |
gr.Image(label="Source Image (Car to change style)"),
|
317 |
gr.Image(label="Reference Image (Style to transfer)"),
|
318 |
-
# gr.Radio(choices=[0, 1, 2], label="Target Domain (0: BMW, 1: Corvette, 2: Mazda)", value=0), # Eliminado
|
319 |
]
|
320 |
outputs = gr.Image(label="Generated Image (Car with transferred style)")
|
321 |
|
322 |
title = "AutoStyleGAN: Car Style Transfer"
|
323 |
-
description = "Transfer the style of one car to another. Upload a source car image and a reference car image."
|
324 |
|
325 |
-
# Crear la interfaz de Gradio
|
326 |
iface = gr.Interface(
|
327 |
-
fn=lambda source_image, reference_image: main(source_image, reference_image, checkpoint_path, args),
|
328 |
inputs=inputs,
|
329 |
outputs=outputs,
|
330 |
title=title,
|
@@ -334,4 +330,4 @@ def gradio_interface():
|
|
334 |
|
335 |
if __name__ == '__main__':
|
336 |
iface = gradio_interface()
|
337 |
-
iface.launch(share=True)
|
|
|
10 |
from torchvision.utils import save_image
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
13 |
+
import io
|
14 |
|
15 |
# Asegúrate de que las funciones necesarias estén definidas (si no lo están ya)
|
16 |
def resize(img, size):
|
|
|
252 |
print(f"Error al cargar el checkpoint: {e}.")
|
253 |
raise Exception(f"Error al cargar el checkpoint: {e}")
|
254 |
|
255 |
+
def transfer_style(self, source_image, reference_image):
|
256 |
# Asegúrate de que los modelos estén en modo de evaluación
|
257 |
self.G.eval()
|
258 |
self.S.eval()
|
|
|
265 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
266 |
])
|
267 |
# Convertir a PIL image antes de la transformación
|
268 |
+
source_image = Image.open(io.BytesIO(source_image)) # Use BytesIO
|
269 |
+
reference_image = Image.open(io.BytesIO(reference_image))
|
270 |
|
271 |
source_image = transform(source_image).unsqueeze(0).to(self.device)
|
272 |
reference_image = transform(reference_image).unsqueeze(0).to(self.device)
|
273 |
|
|
|
|
|
|
|
274 |
# Codificar el estilo de la imagen de referencia
|
275 |
+
s_ref = self.S(reference_image, torch.tensor([0]).to(self.device))
|
276 |
|
277 |
# Generar la imagen con el estilo transferido
|
278 |
generated_image = self.G(source_image, s_ref)
|
|
|
282 |
return generated_image
|
283 |
|
284 |
# Función principal para la inferencia
|
285 |
+
def main(source_image, reference_image, checkpoint_path, args):
|
286 |
if source_image is None or reference_image is None:
|
287 |
raise gr.Error("Por favor, proporciona ambas imágenes (fuente y referencia).")
|
288 |
|
|
|
292 |
solver.load_checkpoint(checkpoint_path)
|
293 |
|
294 |
# Realizar la transferencia de estilo
|
295 |
+
generated_image = solver.transfer_style(source_image, reference_image)
|
296 |
return generated_image
|
297 |
|
298 |
def gradio_interface():
|
299 |
# Definir los argumentos (ajustados para la inferencia)
|
300 |
args = SimpleNamespace(
|
301 |
+
img_size=128,
|
302 |
+
num_domains=3,
|
303 |
+
latent_dim=16,
|
304 |
style_dim=64,
|
305 |
+
num_workers=0,
|
306 |
seed=8365,
|
307 |
)
|
308 |
|
309 |
# Ruta al checkpoint
|
310 |
+
checkpoint_path = "iter/20500_nets_ema.ckpt"
|
311 |
|
312 |
# Crear la interfaz de Gradio
|
313 |
inputs = [
|
314 |
gr.Image(label="Source Image (Car to change style)"),
|
315 |
gr.Image(label="Reference Image (Style to transfer)"),
|
|
|
316 |
]
|
317 |
outputs = gr.Image(label="Generated Image (Car with transferred style)")
|
318 |
|
319 |
title = "AutoStyleGAN: Car Style Transfer"
|
320 |
+
description = "Transfer the style of one car to another. Upload a source car image and a reference car image."
|
321 |
|
|
|
322 |
iface = gr.Interface(
|
323 |
+
fn=lambda source_image, reference_image: main(source_image, reference_image, checkpoint_path, args),
|
324 |
inputs=inputs,
|
325 |
outputs=outputs,
|
326 |
title=title,
|
|
|
330 |
|
331 |
if __name__ == '__main__':
|
332 |
iface = gradio_interface()
|
333 |
+
iface.launch(share=True)
|