tincri commited on
Commit
efe16f0
1 Parent(s): 8df47de

Fix #24 app.py, dependencies

Browse files
Files changed (2) hide show
  1. app.py +16 -10
  2. requirements.txt +2 -1
app.py CHANGED
@@ -11,7 +11,7 @@ from torchvision.utils import save_image
11
  import gradio as gr
12
  import numpy as np
13
  import io
14
- import tempfile # Importar tempfile
15
 
16
  # Aseg煤rate de que las funciones necesarias est茅n definidas (si no lo est谩n ya)
17
  def resize(img, size):
@@ -266,13 +266,19 @@ class Solver(object):
266
  transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
267
  ])
268
  # Convertir a PIL image antes de la transformaci贸n
269
- with tempfile.NamedTemporaryFile(suffix=".jpg") as source_temp_file, \
270
- tempfile.NamedTemporaryFile(suffix=".jpg") as reference_temp_file:
271
- source_temp_file.write(source_image)
272
- reference_temp_file.write(reference_image)
273
- source_image_pil = Image.open(source_temp_file.name)
274
- reference_image_pil = Image.open(reference_temp_file.name)
275
-
 
 
 
 
 
 
276
  source_image = transform(source_image_pil).unsqueeze(0).to(self.device)
277
  reference_image = transform(reference_image_pil).unsqueeze(0).to(self.device)
278
 
@@ -312,7 +318,7 @@ def gradio_interface():
312
  )
313
 
314
  # Ruta al checkpoint
315
- checkpoint_path = "iter/20500_nets_ema.ckpt"
316
 
317
  # Crear la interfaz de Gradio
318
  inputs = [
@@ -335,4 +341,4 @@ def gradio_interface():
335
 
336
  if __name__ == '__main__':
337
  iface = gradio_interface()
338
- iface.launch(share=True)
 
11
  import gradio as gr
12
  import numpy as np
13
  import io
14
+ import tempfile
15
 
16
  # Aseg煤rate de que las funciones necesarias est茅n definidas (si no lo est谩n ya)
17
  def resize(img, size):
 
266
  transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
267
  ])
268
  # Convertir a PIL image antes de la transformaci贸n
269
+ try:
270
+ with tempfile.NamedTemporaryFile(suffix=".jpg") as source_temp_file, \
271
+ tempfile.NamedTemporaryFile(suffix=".jpg") as reference_temp_file:
272
+ source_temp_file.write(source_image)
273
+ reference_temp_file.write(reference_image)
274
+ # Verificar el contenido de los archivos temporales
275
+ print(f"Primeros 100 bytes de {source_temp_file.name}: {open(source_temp_file.name, 'rb').read(100)}")
276
+ print(f"Primeros 100 bytes de {reference_temp_file.name}: {open(reference_temp_file.name, 'rb').read(100)}")
277
+ source_image_pil = Image.open(source_temp_file.name)
278
+ reference_image_pil = Image.open(reference_temp_file.name)
279
+ except Exception as e:
280
+ print(f"Error al procesar las im谩genes: {e}")
281
+ raise # Re-raise la excepci贸n para que Gradio la capture
282
  source_image = transform(source_image_pil).unsqueeze(0).to(self.device)
283
  reference_image = transform(reference_image_pil).unsqueeze(0).to(self.device)
284
 
 
318
  )
319
 
320
  # Ruta al checkpoint
321
+ checkpoint_path = "iter/10500_nets_ema.ckpt"
322
 
323
  # Crear la interfaz de Gradio
324
  inputs = [
 
341
 
342
  if __name__ == '__main__':
343
  iface = gradio_interface()
344
+ iface.launch(share=True)
requirements.txt CHANGED
@@ -3,4 +3,5 @@ torch
3
  torchvision
4
  Pillow
5
  numpy
6
- huggingface_hub
 
 
3
  torchvision
4
  Pillow
5
  numpy
6
+ huggingface_hub
7
+ tempfile