Spaces:
Sleeping
Sleeping
Fix #24 app.py, dependencies
Browse files- app.py +16 -10
- requirements.txt +2 -1
app.py
CHANGED
@@ -11,7 +11,7 @@ from torchvision.utils import save_image
|
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
13 |
import io
|
14 |
-
import tempfile
|
15 |
|
16 |
# Aseg煤rate de que las funciones necesarias est茅n definidas (si no lo est谩n ya)
|
17 |
def resize(img, size):
|
@@ -266,13 +266,19 @@ class Solver(object):
|
|
266 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
267 |
])
|
268 |
# Convertir a PIL image antes de la transformaci贸n
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
source_image = transform(source_image_pil).unsqueeze(0).to(self.device)
|
277 |
reference_image = transform(reference_image_pil).unsqueeze(0).to(self.device)
|
278 |
|
@@ -312,7 +318,7 @@ def gradio_interface():
|
|
312 |
)
|
313 |
|
314 |
# Ruta al checkpoint
|
315 |
-
checkpoint_path = "iter/
|
316 |
|
317 |
# Crear la interfaz de Gradio
|
318 |
inputs = [
|
@@ -335,4 +341,4 @@ def gradio_interface():
|
|
335 |
|
336 |
if __name__ == '__main__':
|
337 |
iface = gradio_interface()
|
338 |
-
iface.launch(share=True)
|
|
|
11 |
import gradio as gr
|
12 |
import numpy as np
|
13 |
import io
|
14 |
+
import tempfile
|
15 |
|
16 |
# Aseg煤rate de que las funciones necesarias est茅n definidas (si no lo est谩n ya)
|
17 |
def resize(img, size):
|
|
|
266 |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
267 |
])
|
268 |
# Convertir a PIL image antes de la transformaci贸n
|
269 |
+
try:
|
270 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg") as source_temp_file, \
|
271 |
+
tempfile.NamedTemporaryFile(suffix=".jpg") as reference_temp_file:
|
272 |
+
source_temp_file.write(source_image)
|
273 |
+
reference_temp_file.write(reference_image)
|
274 |
+
# Verificar el contenido de los archivos temporales
|
275 |
+
print(f"Primeros 100 bytes de {source_temp_file.name}: {open(source_temp_file.name, 'rb').read(100)}")
|
276 |
+
print(f"Primeros 100 bytes de {reference_temp_file.name}: {open(reference_temp_file.name, 'rb').read(100)}")
|
277 |
+
source_image_pil = Image.open(source_temp_file.name)
|
278 |
+
reference_image_pil = Image.open(reference_temp_file.name)
|
279 |
+
except Exception as e:
|
280 |
+
print(f"Error al procesar las im谩genes: {e}")
|
281 |
+
raise # Re-raise la excepci贸n para que Gradio la capture
|
282 |
source_image = transform(source_image_pil).unsqueeze(0).to(self.device)
|
283 |
reference_image = transform(reference_image_pil).unsqueeze(0).to(self.device)
|
284 |
|
|
|
318 |
)
|
319 |
|
320 |
# Ruta al checkpoint
|
321 |
+
checkpoint_path = "iter/10500_nets_ema.ckpt"
|
322 |
|
323 |
# Crear la interfaz de Gradio
|
324 |
inputs = [
|
|
|
341 |
|
342 |
if __name__ == '__main__':
|
343 |
iface = gradio_interface()
|
344 |
+
iface.launch(share=True)
|
requirements.txt
CHANGED
@@ -3,4 +3,5 @@ torch
|
|
3 |
torchvision
|
4 |
Pillow
|
5 |
numpy
|
6 |
-
huggingface_hub
|
|
|
|
3 |
torchvision
|
4 |
Pillow
|
5 |
numpy
|
6 |
+
huggingface_hub
|
7 |
+
tempfile
|