Spaces:
Running
Running
File size: 1,459 Bytes
039d611 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load the model and tokenizer
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def concatenate_and_generate(text1, text2, temperature, top_p):
concatenated_text = text1 + " " + text2
inputs = tokenizer(concatenated_text, return_tensors="pt")
# Generate the output with specified temperature and top_p
output = model.generate(
inputs["input_ids"],
do_sample=True,
temperature=temperature,
top_p=top_p,
max_length=100
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Define Gradio interface
inputs = [
gr.inputs.Textbox(lines=2, placeholder="Enter first text here..."),
gr.inputs.Textbox(lines=2, placeholder="Enter second text here..."),
gr.inputs.Slider(0.1, 1.0, 0.7, step=0.1, label="Temperature"),
gr.inputs.Slider(0.1, 1.0, 0.9, step=0.1, label="Top-p")
]
outputs = gr.outputs.Textbox()
gr.Interface(
fn=concatenate_and_generate,
inputs=inputs,
outputs=outputs,
title="Text Concatenation and Generation with FLAN-T5",
description="Concatenate two input texts and generate an output using google/flan-t5-large. Adjust the temperature and top_p parameters for different generation behaviors."
).launch() |