AjayP13 commited on
Commit
6308662
·
verified ·
1 Parent(s): b6f4412

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -1
app.py CHANGED
@@ -2,7 +2,7 @@ import torch
2
  import numpy as np
3
  from torch.nn.utils.rnn import pad_sequence
4
  import gradio as gr
5
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
6
  from sentence_transformers import SentenceTransformer
7
 
8
  # Load the model and tokenizer
@@ -28,6 +28,7 @@ def get_target_style_embeddings(target_texts_batch):
28
  return mean_embeddings.float().cpu().numpy()
29
 
30
  def get_luar_embeddings(texts_batch):
 
31
  episodes = texts_batch
32
  tokenized_episodes = [luar_tokenizer(episode, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device) for episode in episodes]
33
  episode_lengths = [t["attention_mask"].shape[0] for t in tokenized_episodes]
 
2
  import numpy as np
3
  from torch.nn.utils.rnn import pad_sequence
4
  import gradio as gr
5
+ from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer
6
  from sentence_transformers import SentenceTransformer
7
 
8
  # Load the model and tokenizer
 
28
  return mean_embeddings.float().cpu().numpy()
29
 
30
  def get_luar_embeddings(texts_batch):
31
+ assert set([len(texts) for texts in texts_batch]) == 1
32
  episodes = texts_batch
33
  tokenized_episodes = [luar_tokenizer(episode, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device) for episode in episodes]
34
  episode_lengths = [t["attention_mask"].shape[0] for t in tokenized_episodes]