Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import torch
|
|
2 |
import numpy as np
|
3 |
from torch.nn.utils.rnn import pad_sequence
|
4 |
import gradio as gr
|
5 |
-
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
|
8 |
# Load the model and tokenizer
|
@@ -28,6 +28,7 @@ def get_target_style_embeddings(target_texts_batch):
|
|
28 |
return mean_embeddings.float().cpu().numpy()
|
29 |
|
30 |
def get_luar_embeddings(texts_batch):
|
|
|
31 |
episodes = texts_batch
|
32 |
tokenized_episodes = [luar_tokenizer(episode, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device) for episode in episodes]
|
33 |
episode_lengths = [t["attention_mask"].shape[0] for t in tokenized_episodes]
|
|
|
2 |
import numpy as np
|
3 |
from torch.nn.utils.rnn import pad_sequence
|
4 |
import gradio as gr
|
5 |
+
from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
|
8 |
# Load the model and tokenizer
|
|
|
28 |
return mean_embeddings.float().cpu().numpy()
|
29 |
|
30 |
def get_luar_embeddings(texts_batch):
|
31 |
+
assert set([len(texts) for texts in texts_batch]) == 1
|
32 |
episodes = texts_batch
|
33 |
tokenized_episodes = [luar_tokenizer(episode, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device) for episode in episodes]
|
34 |
episode_lengths = [t["attention_mask"].shape[0] for t in tokenized_episodes]
|