Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,29 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
|
4 |
# Load the model and tokenizer
|
|
|
5 |
model_name = "google/flan-t5-large"
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
7 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
|
|
8 |
|
9 |
-
def
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Generate the output with specified temperature and top_p
|
14 |
output = model.generate(
|
@@ -19,8 +34,11 @@ def run_tinystyler(source_text, target_example_texts, reranking, temperature, to
|
|
19 |
max_length=1024
|
20 |
)
|
21 |
|
22 |
-
|
23 |
-
return
|
|
|
|
|
|
|
24 |
|
25 |
# Preset examples with cached generations
|
26 |
preset_examples = {
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from torch.nn.utils.rnn import pad_sequence
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
|
7 |
# Load the model and tokenizer
|
8 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
model_name = "google/flan-t5-large"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = SentenceTransformer('AnnaWegmann/Style-Embedding', device='cpu')
|
12 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
+
model.to(device)
|
14 |
|
15 |
+
def get_target_style_embeddings(target_texts_batch):
|
16 |
+
all_target_texts = [target_text for target_texts in target_texts_batch for target_text in target_texts]
|
17 |
+
embeddings = model.encode(all_target_texts, batch_size=len(all_target_texts), convert_to_tensor=True, show_progress_bar=False)
|
18 |
+
lengths = [len(target_texts) for target_texts in target_texts_batch]
|
19 |
+
split_embeddings = torch.split(embeddings, lengths)
|
20 |
+
padded_embeddings = pad_sequence(split_embeddings, batch_first=True, padding_value=0.0)
|
21 |
+
mask = (torch.arange(padded_embeddings.size(1))[None, :] < torch.tensor(lengths)[:, None]).to(torch.float32).unsqueeze(-1)
|
22 |
+
mean_embeddings = torch.sum(padded_embeddings * mask, dim=1) / mask.sum(dim=1)
|
23 |
+
return mean_embeddings.cpu().numpy()
|
24 |
+
|
25 |
+
def run_tinystyler_batch(source_texts, target_example_texts_batch, reranking, temperature, top_p):
|
26 |
+
inputs = tokenizer(source_texts, return_tensors="pt")
|
27 |
|
28 |
# Generate the output with specified temperature and top_p
|
29 |
output = model.generate(
|
|
|
34 |
max_length=1024
|
35 |
)
|
36 |
|
37 |
+
generated_texts = tokenizer.decode_batch(output, skip_special_tokens=True)
|
38 |
+
return generated_texts
|
39 |
+
|
40 |
+
def run_tinystyler(source_text, target_example_texts, reranking, temperature, top_p):
|
41 |
+
return run_tinystyler_batch([source_text], [target_example_texts], reranking, temperature, top_p)[0]
|
42 |
|
43 |
# Preset examples with cached generations
|
44 |
preset_examples = {
|