AjayP13 commited on
Commit
9687f11
·
verified ·
1 Parent(s): b6f8b65

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -1
app.py CHANGED
@@ -4,6 +4,7 @@ from torch.nn.utils.rnn import pad_sequence
4
  import gradio as gr
5
  from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer
6
  from sentence_transformers import SentenceTransformer
 
7
 
8
  # Load the model and tokenizer
9
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
@@ -46,7 +47,9 @@ def run_tinystyler_batch(source_texts, target_texts_batch, reranking, temperatur
46
  inputs = tokenizer(source_texts, return_tensors="pt").to(device)
47
  target_style_embeddings = get_target_style_embeddings(target_texts_batch)
48
  source_style_luar_embeddings = get_luar_embeddings([[st] for st in source_texts])
 
49
  target_style_luar_embeddings = get_luar_embeddings(target_texts_batch)
 
50
 
51
 
52
  # Generate the output with specified temperature and top_p
@@ -58,14 +61,16 @@ def run_tinystyler_batch(source_texts, target_texts_batch, reranking, temperatur
58
  max_length=1024,
59
  num_return_sequences=reranking,
60
  )
61
-
62
  generated_texts = tokenizer.batch_decode(output, skip_special_tokens=True)
63
 
64
  # Evaluate candidates
65
  candidates_luar_embeddings = [get_luar_embeddings([[candidates[i]] for candidates in generated_texts]) for i in range(reranking)]
 
66
 
67
  # Get best based on re-ranking
68
  generated_texts = [texts[0] for texts in generated_texts]
 
69
 
70
  return generated_texts
71
 
 
4
  import gradio as gr
5
  from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer
6
  from sentence_transformers import SentenceTransformer
7
+ from time import time
8
 
9
  # Load the model and tokenizer
10
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
 
47
  inputs = tokenizer(source_texts, return_tensors="pt").to(device)
48
  target_style_embeddings = get_target_style_embeddings(target_texts_batch)
49
  source_style_luar_embeddings = get_luar_embeddings([[st] for st in source_texts])
50
+ print("Log 0", time(), source_style_luar_embeddings.shape)
51
  target_style_luar_embeddings = get_luar_embeddings(target_texts_batch)
52
+ print("Log 1", time(), target_style_luar_embeddings.shape)
53
 
54
 
55
  # Generate the output with specified temperature and top_p
 
61
  max_length=1024,
62
  num_return_sequences=reranking,
63
  )
64
+ print("Log 2", time(), output.shape)
65
  generated_texts = tokenizer.batch_decode(output, skip_special_tokens=True)
66
 
67
  # Evaluate candidates
68
  candidates_luar_embeddings = [get_luar_embeddings([[candidates[i]] for candidates in generated_texts]) for i in range(reranking)]
69
+ print("Log 3", time(), len(candidates_luar_embeddings), len(candidates_luar_embeddings[0]))
70
 
71
  # Get best based on re-ranking
72
  generated_texts = [texts[0] for texts in generated_texts]
73
+ print("Final Log", time(), len(generated_texts))
74
 
75
  return generated_texts
76