Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from torch.nn.utils.rnn import pad_sequence
|
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
|
|
7 |
|
8 |
# Load the model and tokenizer
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -46,7 +47,9 @@ def run_tinystyler_batch(source_texts, target_texts_batch, reranking, temperatur
|
|
46 |
inputs = tokenizer(source_texts, return_tensors="pt").to(device)
|
47 |
target_style_embeddings = get_target_style_embeddings(target_texts_batch)
|
48 |
source_style_luar_embeddings = get_luar_embeddings([[st] for st in source_texts])
|
|
|
49 |
target_style_luar_embeddings = get_luar_embeddings(target_texts_batch)
|
|
|
50 |
|
51 |
|
52 |
# Generate the output with specified temperature and top_p
|
@@ -58,14 +61,16 @@ def run_tinystyler_batch(source_texts, target_texts_batch, reranking, temperatur
|
|
58 |
max_length=1024,
|
59 |
num_return_sequences=reranking,
|
60 |
)
|
61 |
-
|
62 |
generated_texts = tokenizer.batch_decode(output, skip_special_tokens=True)
|
63 |
|
64 |
# Evaluate candidates
|
65 |
candidates_luar_embeddings = [get_luar_embeddings([[candidates[i]] for candidates in generated_texts]) for i in range(reranking)]
|
|
|
66 |
|
67 |
# Get best based on re-ranking
|
68 |
generated_texts = [texts[0] for texts in generated_texts]
|
|
|
69 |
|
70 |
return generated_texts
|
71 |
|
|
|
4 |
import gradio as gr
|
5 |
from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
from time import time
|
8 |
|
9 |
# Load the model and tokenizer
|
10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
47 |
inputs = tokenizer(source_texts, return_tensors="pt").to(device)
|
48 |
target_style_embeddings = get_target_style_embeddings(target_texts_batch)
|
49 |
source_style_luar_embeddings = get_luar_embeddings([[st] for st in source_texts])
|
50 |
+
print("Log 0", time(), source_style_luar_embeddings.shape)
|
51 |
target_style_luar_embeddings = get_luar_embeddings(target_texts_batch)
|
52 |
+
print("Log 1", time(), target_style_luar_embeddings.shape)
|
53 |
|
54 |
|
55 |
# Generate the output with specified temperature and top_p
|
|
|
61 |
max_length=1024,
|
62 |
num_return_sequences=reranking,
|
63 |
)
|
64 |
+
print("Log 2", time(), output.shape)
|
65 |
generated_texts = tokenizer.batch_decode(output, skip_special_tokens=True)
|
66 |
|
67 |
# Evaluate candidates
|
68 |
candidates_luar_embeddings = [get_luar_embeddings([[candidates[i]] for candidates in generated_texts]) for i in range(reranking)]
|
69 |
+
print("Log 3", time(), len(candidates_luar_embeddings), len(candidates_luar_embeddings[0]))
|
70 |
|
71 |
# Get best based on re-ranking
|
72 |
generated_texts = [texts[0] for texts in generated_texts]
|
73 |
+
print("Final Log", time(), len(generated_texts))
|
74 |
|
75 |
return generated_texts
|
76 |
|