import torch import numpy as np from torch.nn.utils.rnn import pad_sequence import gradio as gr from transformers import AutoModel, AutoModelForSeq2SeqLM, AutoTokenizer from sentence_transformers import SentenceTransformer # Load the model and tokenizer device = 'cuda' if torch.cuda.is_available() else 'cpu' model_name = "google/flan-t5-large" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) model.to(device) embedding_model = SentenceTransformer('AnnaWegmann/Style-Embedding', device='cpu').half() luar_model = AutoModel.from_pretrained("rrivera1849/LUAR-MUD", revision="51b0d9ecec5336314e02f191dd8ca4acc0652fe1", trust_remote_code=True).half() luar_model.to(device) luar_tokenizer = AutoTokenizer.from_pretrained("rrivera1849/LUAR-MUD", revision="51b0d9ecec5336314e02f191dd8ca4acc0652fe1", trust_remote_code=True) def get_target_style_embeddings(target_texts_batch): all_target_texts = [target_text for target_texts in target_texts_batch for target_text in target_texts] embeddings = embedding_model.encode(all_target_texts, batch_size=len(all_target_texts), convert_to_tensor=True, show_progress_bar=False) lengths = [len(target_texts) for target_texts in target_texts_batch] split_embeddings = torch.split(embeddings, lengths) padded_embeddings = pad_sequence(split_embeddings, batch_first=True, padding_value=0.0) mask = (torch.arange(padded_embeddings.size(1))[None, :] < torch.tensor(lengths)[:, None]).to(embeddings.dtype).unsqueeze(-1) mean_embeddings = torch.sum(padded_embeddings * mask, dim=1) / mask.sum(dim=1) return mean_embeddings.float().cpu().numpy() @torch.no_grad() def get_luar_embeddings(texts_batch): assert len(set([len(texts) for texts in texts_batch])) == 1 episodes = texts_batch tokenized_episodes = [luar_tokenizer(episode, max_length=512, padding="longest", truncation=True, return_tensors="pt").to(device) for episode in episodes] episode_lengths = [t["attention_mask"].shape[0] for t in tokenized_episodes] max_episode_length = max(episode_lengths) sequence_lengths = [t["attention_mask"].shape[1] for t in tokenized_episodes] max_sequence_length = max(sequence_lengths) padded_input_ids = [torch.nn.functional.pad(t["input_ids"], (0, 0, 0, max_episode_length - t["input_ids"].shape[0])) for t in tokenized_episodes] padded_attention_mask = [torch.nn.functional.pad(t["attention_mask"], (0, 0, 0, max_episode_length - t["attention_mask"].shape[0])) for t in tokenized_episodes] input_ids = torch.stack(padded_input_ids) attention_mask = torch.stack(padded_attention_mask) return luar_model(input_ids=input_ids, attention_mask=attention_mask).float().cpu().numpy() def run_tinystyler_batch(source_texts, target_texts_batch, reranking, temperature, top_p): inputs = tokenizer(source_texts, return_tensors="pt").to(device) target_style_embeddings = get_target_style_embeddings(target_texts_batch) source_style_luar_embeddings = get_luar_embeddings([[st] for st in source_texts]) target_style_luar_embeddings = get_luar_embeddings(target_texts_batch) # Generate the output with specified temperature and top_p output = model.generate( inputs["input_ids"], do_sample=True, temperature=temperature, top_p=top_p, max_length=1024, n=reranking, ) generated_texts = tokenizer.batch_decode(output, skip_special_tokens=True) output_luar_embeddings = [get_luar_embeddings([[candidates[i]] for candidates in generated_texts]) for i in range(reranking)] # Get best based on re-ranking generated_texts = [texts[0] for texts in generated_texts] return generated_texts def run_tinystyler(source_text, target_texts, reranking, temperature, top_p): target_texts = [target_text.strip() for target_text in target_texts.split("\n")] return run_tinystyler_batch([source_text], [target_texts], reranking, temperature, top_p)[0] # Preset examples with cached generations preset_examples = { "Example 1": { "source_text": "Once upon a time in a small village", "target_texts": "In a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness.", "reranking": 5, "temperature": 1.0, "top_p": 1.0, "output": "Once upon a time in a small village in a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness." }, "Example 2": { "source_text": "The quick brown fox", "target_texts": "A nimble, chocolate-colored fox swiftly darted through the emerald forest, weaving between trees with grace and agility.", "reranking": 5, "temperature": 0.9, "top_p": 0.9, "output": "The quick brown fox, a nimble, chocolate-colored fox, swiftly darted through the emerald forest, weaving between trees with grace and agility." } } # Define Gradio interface with gr.Blocks(theme="ParityError/Interstellar@0.0.1") as demo: gr.Markdown("# TinyStyler Demo") gr.Markdown("Style transfer the source text into the target style, given some example texts of the target style. You can adjust re-ranking and top_p to your desire to control the quality of style transfer. A higher re-ranking value will generally result in better generations, at slower speed.") with gr.Row(): example_dropdown = gr.Dropdown(label="Examples", choices=list(preset_examples.keys())) source_text = gr.Textbox(lines=3, placeholder="Enter the source text to transform into the target style...", label="Source Text") target_texts = gr.Textbox(lines=5, placeholder="Enter example texts of the target style (one per line)...", label="Example Texts of the Target Style") reranking = gr.Slider(1, 10, value=5, step=1, label="Re-ranking") temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature") top_p = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="Top-P") output = gr.Textbox(lines=5, placeholder="Click 'Generate' to transform the source text into the target style.", label="Output", interactive=False) def set_example(example_name): example = preset_examples[example_name] return example["source_text"], example["target_texts"], example["reranking"], example["temperature"], example["top_p"], example["output"] example_dropdown.change( set_example, inputs=[example_dropdown], outputs=[source_text, target_texts, reranking, temperature, top_p, output] ) btn = gr.Button("Generate") btn.click(run_tinystyler, [source_text, target_texts, reranking, temperature, top_p], output) # Initialize the fields with the first example example_dropdown.value, (source_text.value, target_texts.value, reranking.value, temperature.value, top_p.value, output.value) = list(preset_examples.keys())[0], set_example(list(preset_examples.keys())[0]) demo.launch()