EwMeetingNotes / app.py
tirtohadi's picture
Upload folder using huggingface_hub
a146ed0
raw
history blame
1.91 kB
import gradio as gr
import whisper
# Use a pipeline as a high-level helper
from transformers import pipeline
from datetime import timedelta
model_size = "medium"
model = whisper.load_model(model_size)
summarizer_pipe = pipeline('summarization', model="sshleifer/distilbart-cnn-12-6")
def format_seconds(seconds):
# Create a timedelta object with the given seconds
delta = timedelta(seconds=seconds)
# Format the timedelta as a string in the desired format
formatted_time = str(delta)
# Extract hours, minutes, and seconds
hours, remainder = divmod(delta.seconds, 3600)
minutes, seconds = divmod(remainder, 60)
# Format milliseconds with three decimal places
# milliseconds = int(delta.microseconds / 1000)
# Create the final formatted string
formatted_string = "{:02}:{:02}:{:02}".format(hours, minutes, seconds)
return formatted_string
def process_meeting_video(mp3_path):
transcription = model.transcribe(mp3_path, word_timestamps=True)
transcript_text = ""
for segment in transcription["segments"]:
start = segment['start']
end = segment['end']
text = segment['text']
if start == 0.0000:
startTime = "00:00:00"
else:
startTime = format_seconds(start)
endTime = format_seconds(end)
transcript_text += (f"[{startTime}->{endTime}] {text}\n")
summary_output = summarizer_pipe(transcription["text"])[0]['summary_text']
return transcript_text,summary_output
summary_box = gr.Textbox(label="Summary", lines=10)
transcription_box = gr.Textbox(label="Transcript", lines=30)
demo = gr.Interface(process_meeting_video,
inputs=gr.File(),
outputs=[transcription_box, summary_box],
)
if __name__ == "__main__":
demo.launch()