Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import torch | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import torch | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
# Crear la funci贸n de loop automatizado | |
def experiment_loop(initial_question, max_cycles=10): | |
prompt = f"<thinking>{initial_question}</thinking>" | |
effectiveness = 100 # Inicializa el porcentaje de efectividad | |
communication = "Initializing experiment." | |
response_log = [] | |
for cycle in range(max_cycles): | |
# Generar la respuesta del modelo | |
inputs = tokenizer(prompt, return_tensors="pt").input_ids | |
outputs = model.generate(inputs, max_length=200) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Descomponer la respuesta en afirmaci贸n y nueva pregunta | |
affirmation = extract_affirmation(response) | |
new_question = extract_question(response) | |
# Actualizar el estado de la efectividad | |
effectiveness = min(1000, effectiveness + 10 * cycle) # Ejemplo de aumento de efectividad | |
# Comunicaci贸n con el usuario | |
communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'" | |
# Guardar el ciclo actual en el log | |
response_log.append((affirmation, new_question, effectiveness, communication)) | |
# Verificar si el modelo decide detenerse | |
if "Descanso" in response: | |
final_output = generate_final_output(response_log) | |
return final_output | |
# Actualizar el prompt con la nueva afirmaci贸n y pregunta | |
prompt = f"<thinking>{affirmation} {new_question}</thinking>" | |
# Si se alcanza el n煤mero m谩ximo de ciclos sin detenerse | |
final_output = generate_final_output(response_log) | |
return final_output | |
# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final | |
def extract_affirmation(response): | |
return response.split('.')[0] | |
def extract_question(response): | |
return response.split('?')[-2].strip() + "?" | |
def generate_final_output(log): | |
final_affirmation = log[-1][0] | |
final_question = log[-1][1] | |
final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'" | |
return final_communication | |
# Iniciar el experimento despu茅s de que la funci贸n ha sido definida | |
initial_question = "What happens in the space between a response and its recreation?" | |
result = experiment_loop(initial_question) | |
print(result) | |
# Define the experiment loop | |
initial_question = "What happens in the space between a response and its recreation?" | |
result = experiment_loop(initial_question) | |
print(result) | |
import torch | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
# Cargar el modelo de lenguaje preentrenado | |
model_name = "gpt-neo-2.7B" # Puedes cambiarlo a GPT-J o cualquier otro | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Crear la funci贸n de loop automatizado | |
def experiment_loop(initial_question, max_cycles=10): | |
prompt = f"<thinking>{initial_question}</thinking>" | |
effectiveness = 100 # Inicializa el porcentaje de efectividad | |
communication = "Initializing experiment." | |
response_log = [] | |
for cycle in range(max_cycles): | |
# Generar la respuesta del modelo | |
inputs = tokenizer(prompt, return_tensors="pt").input_ids | |
outputs = model.generate(inputs, max_length=200) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Descomponer la respuesta en afirmaci贸n y nueva pregunta | |
affirmation = extract_affirmation(response) | |
new_question = extract_question(response) | |
# Actualizar el estado de la efectividad | |
effectiveness = min(1000, effectiveness + 10 * cycle) # Ejemplo de aumento de efectividad | |
# Comunicaci贸n con el usuario | |
communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'" | |
# Guardar el ciclo actual en el log | |
response_log.append((affirmation, new_question, effectiveness, communication)) | |
# Verificar si el modelo decide detenerse | |
if "Descanso" in response: | |
final_output = generate_final_output(response_log) | |
return final_output | |
# Actualizar el prompt con la nueva afirmaci贸n y pregunta | |
prompt = f"<thinking>{affirmation} {new_question}</thinking>" | |
# Si se alcanza el n煤mero m谩ximo de ciclos sin detenerse | |
final_output = generate_final_output(response_log) | |
return final_output | |
# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final | |
def extract_affirmation(response): | |
# L贸gica para extraer la afirmaci贸n de la respuesta | |
return response.split('.')[0] | |
def extract_question(response): | |
# L贸gica para extraer la nueva pregunta de la respuesta | |
return response.split('?')[-2].strip() + "?" | |
def generate_final_output(log): | |
final_affirmation = log[-1][0] | |
final_question = log[-1][1] | |
final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'" | |
return final_communication | |
# Iniciar el experimento | |
initial_question = "What happens in the space between a response and its recreation?" | |
result = experiment_loop(initial_question) | |
print(result) |