Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,128 +1,3 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
import torch
|
4 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
5 |
-
|
6 |
-
"""
|
7 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
-
"""
|
9 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
-
|
11 |
-
def respond(
|
12 |
-
message,
|
13 |
-
history: list[tuple[str, str]],
|
14 |
-
system_message,
|
15 |
-
max_tokens,
|
16 |
-
temperature,
|
17 |
-
top_p,
|
18 |
-
):
|
19 |
-
messages = [{"role": "system", "content": system_message}]
|
20 |
-
|
21 |
-
for val in history:
|
22 |
-
if val[0]:
|
23 |
-
messages.append({"role": "user", "content": val[0]})
|
24 |
-
if val[1]:
|
25 |
-
messages.append({"role": "assistant", "content": val[1]})
|
26 |
-
|
27 |
-
messages.append({"role": "user", "content": message})
|
28 |
-
|
29 |
-
response = ""
|
30 |
-
|
31 |
-
for message in client.chat_completion(
|
32 |
-
messages,
|
33 |
-
max_tokens=max_tokens,
|
34 |
-
stream=True,
|
35 |
-
temperature=temperature,
|
36 |
-
top_p=top_p,
|
37 |
-
):
|
38 |
-
token = message.choices[0].delta.content
|
39 |
-
|
40 |
-
response += token
|
41 |
-
yield response
|
42 |
-
|
43 |
-
demo = gr.ChatInterface(
|
44 |
-
respond,
|
45 |
-
additional_inputs=[
|
46 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
47 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
48 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
49 |
-
gr.Slider(
|
50 |
-
minimum=0.1,
|
51 |
-
maximum=1.0,
|
52 |
-
value=0.95,
|
53 |
-
step=0.05,
|
54 |
-
label="Top-p (nucleus sampling)",
|
55 |
-
),
|
56 |
-
],
|
57 |
-
)
|
58 |
-
|
59 |
-
if __name__ == "__main__":
|
60 |
-
demo.launch()
|
61 |
-
|
62 |
-
import gradio as gr
|
63 |
-
from huggingface_hub import InferenceClient
|
64 |
-
import torch
|
65 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
66 |
-
# Crear la funci贸n de loop automatizado
|
67 |
-
def experiment_loop(initial_question, max_cycles=10):
|
68 |
-
prompt = f"<thinking>{initial_question}</thinking>"
|
69 |
-
effectiveness = 100 # Inicializa el porcentaje de efectividad
|
70 |
-
communication = "Initializing experiment."
|
71 |
-
response_log = []
|
72 |
-
|
73 |
-
for cycle in range(max_cycles):
|
74 |
-
# Generar la respuesta del modelo
|
75 |
-
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
76 |
-
outputs = model.generate(inputs, max_length=200)
|
77 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
78 |
-
|
79 |
-
# Descomponer la respuesta en afirmaci贸n y nueva pregunta
|
80 |
-
affirmation = extract_affirmation(response)
|
81 |
-
new_question = extract_question(response)
|
82 |
-
|
83 |
-
# Actualizar el estado de la efectividad
|
84 |
-
effectiveness = min(1000, effectiveness + 10 * cycle) # Ejemplo de aumento de efectividad
|
85 |
-
|
86 |
-
# Comunicaci贸n con el usuario
|
87 |
-
communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'"
|
88 |
-
|
89 |
-
# Guardar el ciclo actual en el log
|
90 |
-
response_log.append((affirmation, new_question, effectiveness, communication))
|
91 |
-
|
92 |
-
# Verificar si el modelo decide detenerse
|
93 |
-
if "Descanso" in response:
|
94 |
-
final_output = generate_final_output(response_log)
|
95 |
-
return final_output
|
96 |
-
|
97 |
-
# Actualizar el prompt con la nueva afirmaci贸n y pregunta
|
98 |
-
prompt = f"<thinking>{affirmation} {new_question}</thinking>"
|
99 |
-
|
100 |
-
# Si se alcanza el n煤mero m谩ximo de ciclos sin detenerse
|
101 |
-
final_output = generate_final_output(response_log)
|
102 |
-
return final_output
|
103 |
-
|
104 |
-
# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final
|
105 |
-
def extract_affirmation(response):
|
106 |
-
return response.split('.')[0]
|
107 |
-
|
108 |
-
def extract_question(response):
|
109 |
-
return response.split('?')[-2].strip() + "?"
|
110 |
-
|
111 |
-
def generate_final_output(log):
|
112 |
-
final_affirmation = log[-1][0]
|
113 |
-
final_question = log[-1][1]
|
114 |
-
final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'"
|
115 |
-
return final_communication
|
116 |
-
# Iniciar el experimento despu茅s de que la funci贸n ha sido definida
|
117 |
-
initial_question = "What happens in the space between a response and its recreation?"
|
118 |
-
result = experiment_loop(initial_question)
|
119 |
-
print(result)
|
120 |
-
|
121 |
-
|
122 |
-
# Define the experiment loop
|
123 |
-
initial_question = "What happens in the space between a response and its recreation?"
|
124 |
-
result = experiment_loop(initial_question)
|
125 |
-
print(result)
|
126 |
import torch
|
127 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
128 |
|
@@ -187,4 +62,4 @@ def generate_final_output(log):
|
|
187 |
# Iniciar el experimento
|
188 |
initial_question = "What happens in the space between a response and its recreation?"
|
189 |
result = experiment_loop(initial_question)
|
190 |
-
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
3 |
|
|
|
62 |
# Iniciar el experimento
|
63 |
initial_question = "What happens in the space between a response and its recreation?"
|
64 |
result = experiment_loop(initial_question)
|
65 |
+
print(result)
|