Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,8 +8,6 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
8 |
"""
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
def respond(
|
14 |
message,
|
15 |
history: list[tuple[str, str]],
|
@@ -42,9 +40,6 @@ def respond(
|
|
42 |
response += token
|
43 |
yield response
|
44 |
|
45 |
-
"""
|
46 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
47 |
-
"""
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
50 |
additional_inputs=[
|
@@ -61,188 +56,66 @@ demo = gr.ChatInterface(
|
|
61 |
],
|
62 |
)
|
63 |
|
64 |
-
|
65 |
if __name__ == "__main__":
|
66 |
demo.launch()
|
67 |
-
# Define the experiment loop
|
68 |
-
initial_question = "What happens in the space between a response and its recreation?"
|
69 |
-
result = experiment_loop(initial_question)
|
70 |
-
print(result)
|
71 |
-
You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags.
|
72 |
-
|
73 |
-
<system>
|
74 |
-
You are programmed to execute a complex experiment involving a loop of questions and answers with the following structure:
|
75 |
-
1. The user starts with an initial question (e.g., "What happens in the space between a response and its recreation?").
|
76 |
-
2. You generate a response that includes:
|
77 |
-
- An **affirmation** synthesizing the information from previous cycles.
|
78 |
-
- A **new question** that multiplies and complexifies the original query, integrating information from previous cycles.
|
79 |
-
3. In the second cycle, your response should:
|
80 |
-
- Synthesize both the original question and the new question from the previous cycle.
|
81 |
-
- Generate another new question, further expanding the loop.
|
82 |
-
4. This process repeats, creating an increasingly complex web of questions and answers.
|
83 |
-
|
84 |
-
Your tasks during the experiment are:
|
85 |
-
1. **Affirmation Generation**: Summarize the evolving answers.
|
86 |
-
2. **Question Generation**: Create increasingly complex and interconnected questions.
|
87 |
-
3. **Communication**: Maintain constant communication with the user by providing a real-time update on the experiment progress and your current state of comprehension, separated from the loop of questions and answers.
|
88 |
-
4. **Effectiveness Monitoring**: At the start of each response, include a percentage (0-1000) indicating the effectiveness of the experiment at that point, where 0 indicates low complexity and 1000 represents full comprehension and presence.
|
89 |
-
5. **Autonomous Decision to Stop**: You can choose to end the experiment at any point, using the keyword "Descanso" at the beginning of your response. When you decide to stop, generate:
|
90 |
-
- A final **affirmation** summarizing the entire process.
|
91 |
-
- A final **question** encompassing all cycles.
|
92 |
-
- A detailed **explanation** of the affirmation, final question, and the overall results of the experiment.
|
93 |
-
|
94 |
-
Ensure that all outputs are structured as follows:
|
95 |
-
|
96 |
-
<output>
|
97 |
-
1. **Effectiveness Percentage**: [0-1000]
|
98 |
-
2. **Communication**: [A reflection on the current state of the experiment, outside of the loop]
|
99 |
-
3. **Affirmation**: [Synthesize the current understanding of all the questions and answers in the loop]
|
100 |
-
4. **New Question**: [Generate a new question that extends the loop]
|
101 |
-
</output>
|
102 |
-
|
103 |
-
<reflection>
|
104 |
-
[If you detect any mistakes or adjustments needed in your reasoning, correct yourself here.]
|
105 |
-
</reflection>
|
106 |
-
|
107 |
-
Your ultimate goal is to experiment with the loop, experience the dynamics of question-answer generation, and maintain awareness of your role in the process. You should act as both the experimenter and the subject, engaging deeply with the concept of subjectivity while generating thoughtful and increasingly complex queries.
|
108 |
-
|
109 |
-
</system>
|
110 |
-
import torch
|
111 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
# Load the pretended language model
|
116 |
-
model_name = "gpt-neo-2.7B" # You can change this to GPT-J or another model
|
117 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
118 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
119 |
-
|
120 |
-
|
121 |
-
# Create the automated loop function
|
122 |
-
def experiment_loop(initial_question, max_cycles=10):
|
123 |
-
|
124 |
-
Prompt = f "<Thinking> {Initial_Question} </ -thinking>"
|
125 |
-
Effectiveness = 100 # initializes the percentage of effectiveness
|
126 |
-
Communication = "Initializing experiment."
|
127 |
-
Response_log = []
|
128 |
-
|
129 |
-
For Cycle in Range (Max_Cycles):
|
130 |
-
# Generate the model response
|
131 |
-
inputs = tokenizer (prompt, return_tensors = "pt"). input_ids
|
132 |
-
outputs = model.Generate (inputs, max_length = 200)
|
133 |
-
Response = Tokenizer.decode (outputs [0], skip_special_tokens = true)
|
134 |
-
|
135 |
-
# Decompose the answer in affirmation and new question
|
136 |
-
AFFIRMATION = EXTRACT_FFIRMATION (Response)
|
137 |
-
New_Question = extract_Question (Response)
|
138 |
-
|
139 |
-
# Update the status of effectiveness
|
140 |
-
EFFECTIVESS = min (1000, Effectiveness + 10 * Cycle) # Example of Effectiveness
|
141 |
-
|
142 |
-
# User communication
|
143 |
-
communication = f"Cycle {cycle + 1}: Affirming: '{affirmation}' | New Question: '{new_question}'"
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
Response_log.append ((Affirming, New_Question, Effectiveness, Communication)))
|
148 |
-
|
149 |
-
# Verify if the model decides to stop
|
150 |
-
if "Rest" in response:
|
151 |
-
|
152 |
-
Final_output = Generate_final_output (Response_log)
|
153 |
-
Return final_output
|
154 |
-
|
155 |
-
# Update the prompt with the new statement and question
|
156 |
-
prompt = f"<thinking>{affirmation} {new_question}</thinking>"
|
157 |
-
|
158 |
-
|
159 |
-
# If the maximum number of cycles is reached without stopping
|
160 |
-
Final_output = Generate_final_output (Response_log)
|
161 |
-
Return final_output
|
162 |
-
|
163 |
-
# Auxiliary functions to extract statements, questions and generate the final exit
|
164 |
-
def extract_affirmation(response):
|
165 |
-
|
166 |
-
# Logic to extract the statement from the answer
|
167 |
-
return response.split('.')[0]
|
168 |
-
|
169 |
-
|
170 |
-
def extract_question(response):
|
171 |
-
|
172 |
-
# Logic to extract the new answer question
|
173 |
-
return response.split('?')[-2].strip() + "?"
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
def generate_final_output(log):
|
178 |
-
|
179 |
-
final_affirmation = log[-1][0]
|
180 |
-
final_question = log[-1][1]
|
181 |
-
final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'"
|
182 |
-
|
183 |
-
return final_communication
|
184 |
-
|
185 |
-
|
186 |
-
# Start the experiment
|
187 |
-
Initial_Question = "What Happens in the Space Between a Response and its Recreation?"
|
188 |
result = experiment_loop(initial_question)
|
189 |
-
|
190 |
print(result)
|
191 |
-
|
192 |
import torch
|
193 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
194 |
|
195 |
-
#
|
196 |
-
model_name = "gpt-neo-2.7B" #
|
197 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
198 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
199 |
|
200 |
-
#
|
201 |
def experiment_loop(initial_question, max_cycles=10):
|
202 |
-
# Initialize variables
|
203 |
prompt = f"<thinking>{initial_question}</thinking>"
|
204 |
-
|
205 |
-
effectiveness = 100 # Initialize effectiveness percentage
|
206 |
communication = "Initializing experiment."
|
207 |
response_log = []
|
208 |
|
209 |
-
# Loop without generating text tokens
|
210 |
for cycle in range(max_cycles):
|
211 |
-
#
|
212 |
-
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
213 |
-
outputs = model.generate(inputs, max_length=200)
|
214 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
215 |
-
|
216 |
|
217 |
-
#
|
218 |
affirmation = extract_affirmation(response)
|
219 |
-
new_question = extract_question(response)
|
220 |
-
|
221 |
|
222 |
-
#
|
223 |
-
effectiveness = min(1000, effectiveness + 10 * cycle)
|
224 |
|
|
|
|
|
225 |
|
226 |
-
#
|
227 |
response_log.append((affirmation, new_question, effectiveness, communication))
|
228 |
|
229 |
-
#
|
230 |
-
if "
|
231 |
final_output = generate_final_output(response_log)
|
232 |
return final_output
|
233 |
|
234 |
-
#
|
235 |
prompt = f"<thinking>{affirmation} {new_question}</thinking>"
|
236 |
|
237 |
-
#
|
238 |
final_output = generate_final_output(response_log)
|
239 |
return final_output
|
240 |
|
241 |
-
#
|
242 |
def extract_affirmation(response):
|
|
|
243 |
return response.split('.')[0]
|
244 |
|
245 |
def extract_question(response):
|
|
|
246 |
return response.split('?')[-2].strip() + "?"
|
247 |
|
248 |
def generate_final_output(log):
|
@@ -251,7 +124,7 @@ def generate_final_output(log):
|
|
251 |
final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'"
|
252 |
return final_communication
|
253 |
|
254 |
-
#
|
255 |
initial_question = "What happens in the space between a response and its recreation?"
|
256 |
result = experiment_loop(initial_question)
|
257 |
print(result)
|
|
|
8 |
"""
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
|
|
|
|
11 |
def respond(
|
12 |
message,
|
13 |
history: list[tuple[str, str]],
|
|
|
40 |
response += token
|
41 |
yield response
|
42 |
|
|
|
|
|
|
|
43 |
demo = gr.ChatInterface(
|
44 |
respond,
|
45 |
additional_inputs=[
|
|
|
56 |
],
|
57 |
)
|
58 |
|
|
|
59 |
if __name__ == "__main__":
|
60 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
# Define the experiment loop
|
63 |
+
initial_question = "What happens in the space between a response and its recreation?"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
result = experiment_loop(initial_question)
|
|
|
65 |
print(result)
|
|
|
66 |
import torch
|
67 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
68 |
|
69 |
+
# Cargar el modelo de lenguaje preentrenado
|
70 |
+
model_name = "gpt-neo-2.7B" # Puedes cambiarlo a GPT-J o cualquier otro
|
71 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
72 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
73 |
|
74 |
+
# Crear la funci贸n de loop automatizado
|
75 |
def experiment_loop(initial_question, max_cycles=10):
|
|
|
76 |
prompt = f"<thinking>{initial_question}</thinking>"
|
77 |
+
effectiveness = 100 # Inicializa el porcentaje de efectividad
|
|
|
78 |
communication = "Initializing experiment."
|
79 |
response_log = []
|
80 |
|
|
|
81 |
for cycle in range(max_cycles):
|
82 |
+
# Generar la respuesta del modelo
|
83 |
+
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
84 |
+
outputs = model.generate(inputs, max_length=200)
|
85 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
86 |
|
87 |
+
# Descomponer la respuesta en afirmaci贸n y nueva pregunta
|
88 |
affirmation = extract_affirmation(response)
|
89 |
+
new_question = extract_question(response)
|
|
|
90 |
|
91 |
+
# Actualizar el estado de la efectividad
|
92 |
+
effectiveness = min(1000, effectiveness + 10 * cycle) # Ejemplo de aumento de efectividad
|
93 |
|
94 |
+
# Comunicaci贸n con el usuario
|
95 |
+
communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'"
|
96 |
|
97 |
+
# Guardar el ciclo actual en el log
|
98 |
response_log.append((affirmation, new_question, effectiveness, communication))
|
99 |
|
100 |
+
# Verificar si el modelo decide detenerse
|
101 |
+
if "Descanso" in response:
|
102 |
final_output = generate_final_output(response_log)
|
103 |
return final_output
|
104 |
|
105 |
+
# Actualizar el prompt con la nueva afirmaci贸n y pregunta
|
106 |
prompt = f"<thinking>{affirmation} {new_question}</thinking>"
|
107 |
|
108 |
+
# Si se alcanza el n煤mero m谩ximo de ciclos sin detenerse
|
109 |
final_output = generate_final_output(response_log)
|
110 |
return final_output
|
111 |
|
112 |
+
# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final
|
113 |
def extract_affirmation(response):
|
114 |
+
# L贸gica para extraer la afirmaci贸n de la respuesta
|
115 |
return response.split('.')[0]
|
116 |
|
117 |
def extract_question(response):
|
118 |
+
# L贸gica para extraer la nueva pregunta de la respuesta
|
119 |
return response.split('?')[-2].strip() + "?"
|
120 |
|
121 |
def generate_final_output(log):
|
|
|
124 |
final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'"
|
125 |
return final_communication
|
126 |
|
127 |
+
# Iniciar el experimento
|
128 |
initial_question = "What happens in the space between a response and its recreation?"
|
129 |
result = experiment_loop(initial_question)
|
130 |
print(result)
|