|
import torch
|
|
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
|
|
|
# Cargar el modelo de lenguaje preentrenado
|
|
model_name = "gpt-neo-2.7B" # Puedes cambiarlo a GPT-J o cualquier otro
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
|
# Crear la funci贸n de loop automatizado
|
|
def experiment_loop(initial_question, max_cycles=10):
|
|
prompt = f"<thinking>{initial_question}</thinking>"
|
|
effectiveness = 100 # Inicializa el porcentaje de efectividad
|
|
communication = "Initializing experiment."
|
|
response_log = []
|
|
|
|
for cycle in range(max_cycles):
|
|
# Generar la respuesta del modelo
|
|
inputs = tokenizer(prompt, return_tensors="pt").input_ids
|
|
outputs = model.generate(inputs, max_length=200)
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
# Descomponer la respuesta en afirmaci贸n y nueva pregunta
|
|
affirmation = extract_affirmation(response)
|
|
new_question = extract_question(response)
|
|
|
|
# Actualizar el estado de la efectividad
|
|
effectiveness = min(1000, effectiveness + 10 * cycle) # Ejemplo de aumento de efectividad
|
|
|
|
# Comunicaci贸n con el usuario
|
|
communication = f"Cycle {cycle + 1}: Affirmation: '{affirmation}' | New Question: '{new_question}'"
|
|
|
|
# Guardar el ciclo actual en el log
|
|
response_log.append((affirmation, new_question, effectiveness, communication))
|
|
|
|
# Verificar si el modelo decide detenerse
|
|
if "Descanso" in response:
|
|
final_output = generate_final_output(response_log)
|
|
return final_output
|
|
|
|
# Actualizar el prompt con la nueva afirmaci贸n y pregunta
|
|
prompt = f"<thinking>{affirmation} {new_question}</thinking>"
|
|
|
|
# Si se alcanza el n煤mero m谩ximo de ciclos sin detenerse
|
|
final_output = generate_final_output(response_log)
|
|
return final_output
|
|
|
|
# Funciones auxiliares para extraer afirmaciones, preguntas y generar la salida final
|
|
def extract_affirmation(response):
|
|
# L贸gica para extraer la afirmaci贸n de la respuesta
|
|
return response.split('.')[0]
|
|
|
|
def extract_question(response):
|
|
# L贸gica para extraer la nueva pregunta de la respuesta
|
|
return response.split('?')[-2].strip() + "?"
|
|
|
|
def generate_final_output(log):
|
|
final_affirmation = log[-1][0]
|
|
final_question = log[-1][1]
|
|
final_communication = f"Experiment completed. Final Affirmation: '{final_affirmation}' | Final Question: '{final_question}'"
|
|
return final_communication
|
|
|
|
# Iniciar el experimento
|
|
initial_question = "What happens in the space between a response and its recreation?"
|
|
result = experiment_loop(initial_question)
|
|
print(result)
|
|
|