Update app.py
Browse files
app.py
CHANGED
@@ -1,59 +1,19 @@
|
|
|
|
1 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
6 |
-
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
7 |
-
|
8 |
-
# ๊ฐ์ ์ ๋ฐ๋ผ prefix ๋ฌธ์ฅ ์์ฑ
|
9 |
-
if emotion == "happy":
|
10 |
-
prefix = "์ค๋์ ๊ธฐ๋ถ์ด ์ข์์. "
|
11 |
-
elif emotion == "sad":
|
12 |
-
prefix = "์ฌํ ๊ธฐ๋ถ์ด์์. "
|
13 |
-
elif emotion == "angry":
|
14 |
-
prefix = "ํ๊ฐ ์น๋ฐ์ด ์ค๋ฅด๋ ๊ธฐ๋ถ์ด์์. "
|
15 |
-
else:
|
16 |
-
prefix = "์ค๋์ ๊ธฐ๋ถ์ด ์ด์ํด์. "
|
17 |
-
|
18 |
-
# prefix๋ฅผ ํ ํฌ๋์ด์งํ์ฌ ์
๋ ฅ ์ํ์ค ์์ฑ
|
19 |
-
input_sequence = tokenizer.encode(prefix, return_tensors="pt")
|
20 |
-
|
21 |
-
# ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ํ
์คํธ ์์ฑ
|
22 |
-
output = model.generate(
|
23 |
-
input_sequence,
|
24 |
-
max_length=max_length,
|
25 |
-
num_return_sequences=num_samples,
|
26 |
-
temperature=temperature,
|
27 |
-
pad_token_id=tokenizer.eos_token_id
|
28 |
-
)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
if emotion.lower() in ['happy', 'sad', 'angry']:
|
40 |
-
break
|
41 |
-
else:
|
42 |
-
print("์
๋ ฅ๋ ๊ฐ์ ์ด ์๋ชป๋์์ต๋๋ค. ๋ค์ ์
๋ ฅํด์ฃผ์ธ์.")
|
43 |
-
except EOFError:
|
44 |
-
print("\n์ฌ์ฉ์ ์
๋ ฅ์ด ์ข
๋ฃ๋์์ต๋๋ค. ํ๋ก๊ทธ๋จ์ ์ข
๋ฃํฉ๋๋ค.")
|
45 |
-
return
|
46 |
-
|
47 |
-
# ๋น ๋ฌธ์์ด์ด ์
๋ ฅ๋์์ ๋
|
48 |
-
if not emotion:
|
49 |
-
print("๊ฐ์ ์ ์
๋ ฅํด์ฃผ์ธ์.")
|
50 |
-
|
51 |
-
# ์ผ๊ธฐ ์์ฑ
|
52 |
-
diary_entries = generate_diary(emotion)
|
53 |
# ์์ฑ๋ ์ผ๊ธฐ ์ถ๋ ฅ
|
54 |
-
|
55 |
-
|
56 |
-
print(f"{i}. {entry}")
|
57 |
-
|
58 |
-
if __name__ == "__main__":
|
59 |
-
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
+
st.title("์๋ ์ผ๊ธฐ ์์ฑ๊ธฐ")
|
4 |
|
5 |
+
keywords = st.text_input("5๊ฐ์ ํค์๋๋ฅผ ์
๋ ฅํ์ธ์ (์ผํ๋ก ๊ตฌ๋ถ)", "")
|
6 |
+
keyword_list = [kw.strip() for kw in keywords.split(",")]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
if len(keyword_list) == 5 and st.button("์ผ๊ธฐ ์ฐ๊ธฐ"):
|
9 |
+
# ๋ชจ๋ธ ๋ฐ ํ ํฌ๋์ด์ ๋ก๋
|
10 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
11 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
12 |
+
|
13 |
+
# ํค์๋ ๊ธฐ๋ฐ fine-tuning
|
14 |
+
input_ids = tokenizer.encode(" ".join(keyword_list), return_tensors="pt")
|
15 |
+
output = model.generate(input_ids, max_length=500, num_return_sequences=1, do_sample=True, top_k=50, top_p=0.95, num_beams=5)
|
16 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# ์์ฑ๋ ์ผ๊ธฐ ์ถ๋ ฅ
|
18 |
+
diary = tokenizer.decode(output[0], skip_special_tokens=True)
|
19 |
+
st.write(diary)
|
|
|
|
|
|
|
|