import streamlit as st st.markdown("# Automatic Essay Scoring for IELTS Writing Task 2") st.markdown("##Please enter youtr question and essay below:") st.markdown("**Disclaimer: This is a demo app and the results are not accurate. Model is trained on small dataset and is not robust enough to generalize well. Main application is to determine scores from 6 to 9. Scores below 6 are not accurate.**") st.markdown("### Question:") question = st.text_input("Enter your question here") st.markdown("### Essay:") essay = st.text_input("Enter your essay here") @st.cache_resource def get_pipeline(): from transformers import Pipeline class AESIELTSPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): return kwargs, {}, {} def preprocess(self, inputs): question, essay = inputs encoding = self.tokenizer(question, essay, return_tensors='pt', padding='max_length', truncation=True, max_length=512) input_ids = encoding['input_ids'].to(device) attention_mask = encoding['attention_mask'].to(device) return {'input_ids': input_ids, 'attention_mask': attention_mask} def _forward(self, input): output = self.model(**input) return output[0].item() def postprocess(self, output): return output from transformers.pipelines import PIPELINE_REGISTRY from transformers import DistilBertForSequenceClassification PIPELINE_REGISTRY.register_pipeline( "aes-ielts", AESIELTSPipeline, pt_model=DistilBertForSequenceClassification ) from transformers import pipeline pipe = pipeline("aes-ielts", model="tkharisov7/aes-ielts") return pipe pipe = get_pipeline() predictions = pipe(question=question, essay=essay) st.markdown("### Estimated Score:") st.markdown(f"**{predictions}**")