Spaces:
Running
Running
Updated submission
Browse files- .gitignore +16 -1
- app.py +208 -60
- modelcard.md +61 -0
- requirements.txt +4 -1
.gitignore
CHANGED
@@ -1,2 +1,17 @@
|
|
1 |
-
|
2 |
.ipynb_checkpoints/sandbox-checkpoint.ipynb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
.ipynb_checkpoints/sandbox-checkpoint.ipynb
|
2 |
+
|
3 |
+
auto_evals/
|
4 |
+
venv/
|
5 |
+
__pycache__/
|
6 |
+
.env
|
7 |
+
.ipynb_checkpoints
|
8 |
+
*ipynb
|
9 |
+
.vscode/
|
10 |
+
|
11 |
+
eval-queue/
|
12 |
+
eval-results/
|
13 |
+
eval-queue-bk/
|
14 |
+
eval-results-bk/
|
15 |
+
logs/
|
16 |
+
|
17 |
+
emissions.csv
|
app.py
CHANGED
@@ -1,76 +1,224 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
from codecarbon import EmissionsTracker
|
4 |
-
|
5 |
-
# Import necessary libraries
|
6 |
-
from sklearn.model_selection import train_test_split
|
7 |
-
from sklearn.ensemble import RandomForestClassifier
|
8 |
-
from sklearn.metrics import classification_report, accuracy_score
|
9 |
-
import pandas as pd
|
10 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
|
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
X, y, test_size=0.2, random_state=42
|
38 |
-
)
|
39 |
-
|
40 |
-
# Initialize the model
|
41 |
-
rf_model = RandomForestClassifier(
|
42 |
-
n_estimators=1000,
|
43 |
-
max_depth=5,
|
44 |
-
random_state=42
|
45 |
-
)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
rf_model.fit(X_train, y_train)
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
tracker.start_task("inference")
|
54 |
-
rf_model.predict(X_test)
|
55 |
-
inference_emissions = tracker.stop_task()
|
56 |
-
|
57 |
-
emissions = inference_emissions.emissions
|
58 |
-
energy = inference_emissions.energy_consumed
|
59 |
-
|
60 |
-
return [emissions, energy]
|
61 |
-
|
62 |
-
# Update the interface configuration
|
63 |
-
demo = gr.Interface(
|
64 |
-
fn=submit,
|
65 |
-
inputs=gr.Textbox(label="Username"),
|
66 |
-
outputs=[
|
67 |
-
gr.Number(label="Emissions (kgCO2eq)", precision=6),
|
68 |
-
gr.Number(label="Energy Consumed (kWh)", precision=6)
|
69 |
-
],
|
70 |
-
title="Carbon Emissions Tracker",
|
71 |
-
description="Track the carbon emissions and energy consumption of model training and inference."
|
72 |
-
)
|
73 |
-
|
74 |
-
# Launch the Gradio interface
|
75 |
if __name__ == "__main__":
|
76 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from codecarbon import EmissionsTracker
|
3 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
import random
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
from datetime import datetime
|
10 |
+
from huggingface_hub import HfApi
|
11 |
+
from huggingface_hub import upload_file
|
12 |
+
import tempfile
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
|
15 |
+
# Use dotenv to load the environment variables
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# Get HF token from environment variable
|
19 |
+
HF_TOKEN = os.getenv("HF_TOKEN_TEXT")
|
20 |
+
print(HF_TOKEN)
|
21 |
+
if not HF_TOKEN:
|
22 |
+
print("Warning: HF_TOKEN not found in environment variables. Submissions will not work.")
|
23 |
+
|
24 |
+
tracker = EmissionsTracker(allow_multiple_runs=True)
|
25 |
+
|
26 |
+
# Function to get space username and URL
|
27 |
+
def get_space_info():
|
28 |
+
space_name = os.getenv("SPACE_ID", "")
|
29 |
+
if space_name:
|
30 |
+
try:
|
31 |
+
username = space_name.split("/")[0]
|
32 |
+
space_url = f"https://huggingface.co/spaces/{space_name}"
|
33 |
+
return username, space_url
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error getting space info: {e}")
|
36 |
+
return "local-user", "local-development"
|
37 |
|
38 |
+
def clean_emissions_data(emissions_data):
|
39 |
+
"""Remove unwanted fields from emissions data"""
|
40 |
+
data_dict = emissions_data.__dict__
|
41 |
+
fields_to_remove = ['timestamp', 'project_name', 'experiment_id', 'latitude', 'longitude']
|
42 |
+
return {k: v for k, v in data_dict.items() if k not in fields_to_remove}
|
43 |
+
|
44 |
+
def evaluate():
|
45 |
+
# Get space info
|
46 |
+
username, space_url = get_space_info()
|
47 |
+
|
48 |
+
# Initialize tracker
|
49 |
+
tracker.start()
|
50 |
+
tracker.start_task("inference")
|
51 |
|
52 |
+
# Make random predictions
|
53 |
+
true_labels = test_dataset["label"]
|
54 |
+
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
55 |
|
56 |
+
# Calculate accuracy
|
57 |
+
accuracy = accuracy_score(true_labels, predictions)
|
58 |
|
59 |
+
# Stop tracking emissions
|
60 |
+
emissions_data = tracker.stop_task()
|
61 |
+
|
62 |
+
# Prepare complete results
|
63 |
+
results = {
|
64 |
+
"username": username,
|
65 |
+
"space_url": space_url,
|
66 |
+
"submission_timestamp": datetime.now().isoformat(),
|
67 |
+
"accuracy": float(accuracy),
|
68 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
69 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
70 |
+
"emissions_data": clean_emissions_data(emissions_data)
|
71 |
+
}
|
72 |
+
|
73 |
+
# Return both summary and detailed results
|
74 |
+
return [
|
75 |
+
accuracy,
|
76 |
+
emissions_data.emissions * 1000,
|
77 |
+
emissions_data.energy_consumed * 1000,
|
78 |
+
json.dumps(results, indent=2)
|
79 |
+
]
|
80 |
|
81 |
+
def submit_results(results_json):
|
82 |
+
if not results_json:
|
83 |
+
return gr.Warning("No results to submit")
|
84 |
+
|
85 |
+
if not HF_TOKEN:
|
86 |
+
return gr.Warning("HF_TOKEN not found. Please set up your Hugging Face token.")
|
87 |
+
|
88 |
+
# try:
|
89 |
+
# results_json is already a string, no need to load it
|
90 |
+
results_str = json.dumps(results_json) # Parse the JSON string to get the data
|
91 |
+
|
92 |
+
# Create a temporary file with the results
|
93 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as f:
|
94 |
+
# Write the original JSON string to file
|
95 |
+
f.write(results_str)
|
96 |
+
temp_path = f.name
|
97 |
+
|
98 |
+
# Upload to the dataset
|
99 |
+
api = HfApi(token=HF_TOKEN)
|
100 |
+
path_in_repo = f"submissions/{results_json['username']}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
101 |
+
api.upload_file(
|
102 |
+
path_or_fileobj=temp_path,
|
103 |
+
path_in_repo=path_in_repo,
|
104 |
+
repo_id="frugal-ai-challenge/public-leaderboard-text",
|
105 |
+
repo_type="dataset",
|
106 |
+
token=HF_TOKEN
|
107 |
+
)
|
108 |
+
|
109 |
+
# Clean up
|
110 |
+
os.unlink(temp_path)
|
111 |
+
|
112 |
+
return gr.Info("Results submitted successfully to the leaderboard! 🎉")
|
113 |
+
# except Exception as e:
|
114 |
+
# return gr.Warning(f"Error submitting results: {str(e)}")
|
115 |
|
116 |
+
# Define the label mapping
|
117 |
+
LABEL_MAPPING = {
|
118 |
+
"0_not_relevant": 0, # No relevant claim detected
|
119 |
+
"1_not_happening": 1, # Global warming is not happening
|
120 |
+
"2_not_human": 2, # Not caused by humans
|
121 |
+
"3_not_bad": 3, # Not bad or beneficial
|
122 |
+
"4_solutions_harmful_unnecessary": 4, # Solutions harmful/unnecessary
|
123 |
+
"5_science_unreliable": 5, # Science is unreliable
|
124 |
+
"6_proponents_biased": 6, # Proponents are biased
|
125 |
+
"7_fossil_fuels_needed": 7 # Fossil fuels are needed
|
126 |
+
}
|
127 |
|
128 |
+
# Reverse mapping for display purposes
|
129 |
+
LABEL_DESCRIPTIONS = {
|
130 |
+
0: "No relevant claim detected",
|
131 |
+
1: "Global warming is not happening",
|
132 |
+
2: "Not caused by humans",
|
133 |
+
3: "Not bad or beneficial",
|
134 |
+
4: "Solutions harmful/unnecessary",
|
135 |
+
5: "Science is unreliable",
|
136 |
+
6: "Proponents are biased",
|
137 |
+
7: "Fossil fuels are needed"
|
138 |
+
}
|
139 |
|
140 |
+
# Load and prepare the dataset
|
141 |
+
print("Loading dataset...")
|
142 |
+
dataset = load_dataset("QuotaClimat/frugalaichallenge-text-train")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
# Convert string labels to integers
|
145 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
|
|
146 |
|
147 |
+
# Split dataset
|
148 |
+
train_test = dataset["train"].train_test_split(test_size=0.2, seed=42)
|
149 |
+
train_dataset = train_test["train"]
|
150 |
+
test_dataset = train_test["test"]
|
151 |
+
|
152 |
+
# Display preview
|
153 |
+
print("\nFirst 5 rows of test set:")
|
154 |
+
for i, example in enumerate(test_dataset.select(range(5))):
|
155 |
+
print(f"\nExample {i+1}:")
|
156 |
+
print(f"Text: {example['quote'][:100]}...")
|
157 |
+
print(f"Label: {example['label']} - {LABEL_DESCRIPTIONS[example['label']]}")
|
158 |
+
|
159 |
+
# Create the demo interface
|
160 |
+
with gr.Blocks() as demo:
|
161 |
+
|
162 |
+
|
163 |
+
gr.Markdown("""
|
164 |
+
# Frugal AI Challenge - Text task - Submission portal
|
165 |
+
## Climate Disinformation Classification
|
166 |
+
""")
|
167 |
+
|
168 |
+
with gr.Tabs():
|
169 |
+
|
170 |
+
with gr.Tab("Instructions"):
|
171 |
+
|
172 |
+
gr.Markdown("""
|
173 |
+
To submit your results, please follow the steps below:
|
174 |
+
|
175 |
+
## Prepare your model submission
|
176 |
+
1. Clone the space of this portal on your own Hugging Face account.
|
177 |
+
2. Modify the ``evaluate`` function to replace the baseline by your model loading and inference within the inference pass where the energy consumption and emissions are tracked.
|
178 |
+
3. Eventually complete the requirements and/or any necessaries dependencies in your space.
|
179 |
+
4. Write down your model card in the ``modelcard.md`` file.
|
180 |
+
5. Deploy your space and verify that it works.
|
181 |
+
6. (Optional) You can change the Space hardware to use any GPU directly on Hugging Face.
|
182 |
+
|
183 |
+
## Submit your model to the leaderboard in the ``Model Submission`` tab
|
184 |
+
7. Step 1 - Evaluate model: Click on the button to evaluate your model. This will run you model, computes the accuracy on the test set (20% of the train set), and track the energy consumption and emissions.
|
185 |
+
8. Step 2 - Submit to leaderboard: Click on the button to submit your results to the leaderboard. This will upload the results to the leaderboard dataset and update the leaderboard.
|
186 |
+
9. You can see the leaderboard at https://huggingface.co/datasets/frugal-ai-challenge/public-leaderboard-text
|
187 |
+
""")
|
188 |
+
|
189 |
+
with gr.Tab("Model Submission"):
|
190 |
+
gr.Markdown("## Random Baseline Model")
|
191 |
+
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column(scale=1):
|
194 |
+
evaluate_btn = gr.Button("1. Evaluate model", variant="secondary")
|
195 |
+
with gr.Column(scale=1):
|
196 |
+
submit_btn = gr.Button("2. Submit to leaderboard", variant="primary", size="lg")
|
197 |
+
|
198 |
+
with gr.Row():
|
199 |
+
accuracy_output = gr.Number(label="Accuracy", precision=4)
|
200 |
+
emissions_output = gr.Number(label="Emissions (gCO2eq)", precision=12)
|
201 |
+
energy_output = gr.Number(label="Energy Consumed (Wh)", precision=12)
|
202 |
+
|
203 |
+
with gr.Row():
|
204 |
+
results_json = gr.JSON(label="Detailed Results", visible=True)
|
205 |
+
|
206 |
+
evaluate_btn.click(
|
207 |
+
evaluate,
|
208 |
+
inputs=None,
|
209 |
+
outputs=[accuracy_output, emissions_output, energy_output, results_json]
|
210 |
+
)
|
211 |
+
|
212 |
+
submit_btn.click(
|
213 |
+
submit_results,
|
214 |
+
inputs=[results_json],
|
215 |
+
outputs=None # No need for output component with popups
|
216 |
+
)
|
217 |
+
|
218 |
+
with gr.Tab("Model Card"):
|
219 |
+
with open("modelcard.md", "r") as f:
|
220 |
+
model_card_content = f.read()
|
221 |
+
gr.Markdown(model_card_content)
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
if __name__ == "__main__":
|
224 |
demo.launch()
|
modelcard.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Random Baseline Model Card
|
2 |
+
|
3 |
+
## Model Description
|
4 |
+
|
5 |
+
**Model Type:** Random Baseline Classifier
|
6 |
+
**Task:** Climate Change Disinformation Classification
|
7 |
+
**Version:** 1.0.0
|
8 |
+
**Last Updated:** 2024
|
9 |
+
|
10 |
+
### Overview
|
11 |
+
This is a random baseline model for climate change disinformation classification. It randomly assigns labels to text inputs, serving as a baseline for comparing more sophisticated models.
|
12 |
+
|
13 |
+
### Intended Use
|
14 |
+
- **Primary Use:** Baseline comparison for climate disinformation classification models
|
15 |
+
- **Intended Users:** Researchers and developers working on climate disinformation detection
|
16 |
+
- **Out-of-Scope Uses:** Not intended for production or real-world classification tasks
|
17 |
+
|
18 |
+
## Training Data
|
19 |
+
|
20 |
+
**Dataset:** QuotaClimat/frugalaichallenge-text-train
|
21 |
+
- Size: ~6000 examples
|
22 |
+
- Split: 80% train, 20% test
|
23 |
+
- Labels: 8 categories of climate disinformation claims
|
24 |
+
|
25 |
+
### Labels
|
26 |
+
0. No relevant claim detected
|
27 |
+
1. Global warming is not happening
|
28 |
+
2. Not caused by humans
|
29 |
+
3. Not bad or beneficial
|
30 |
+
4. Solutions harmful/unnecessary
|
31 |
+
5. Science is unreliable
|
32 |
+
6. Proponents are biased
|
33 |
+
7. Fossil fuels are needed
|
34 |
+
|
35 |
+
## Performance
|
36 |
+
|
37 |
+
### Metrics
|
38 |
+
- **Accuracy:** ~12.5% (random chance)
|
39 |
+
- **Environmental Impact:**
|
40 |
+
- Emissions (kgCO2eq)
|
41 |
+
- Energy Consumed (kWh)
|
42 |
+
|
43 |
+
### Limitations
|
44 |
+
- Random predictions with no learning
|
45 |
+
- No consideration of input text
|
46 |
+
- Serves only as a baseline reference
|
47 |
+
|
48 |
+
## Ethical Considerations
|
49 |
+
- Model makes random predictions and should not be used for actual classification
|
50 |
+
- Dataset contains sensitive topics related to climate disinformation
|
51 |
+
- Environmental impact is tracked to promote awareness of AI's carbon footprint
|
52 |
+
|
53 |
+
## Environmental Impact
|
54 |
+
This model tracks its environmental impact using CodeCarbon, measuring:
|
55 |
+
- Carbon emissions
|
56 |
+
- Energy consumption
|
57 |
+
|
58 |
+
## Caveats and Recommendations
|
59 |
+
- Use only as a baseline comparison
|
60 |
+
- Not suitable for production use
|
61 |
+
- Consider environmental impact when running experiments
|
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
codecarbon==2.8.1
|
2 |
-
scikit-learn==1.5.1
|
|
|
|
|
|
|
|
1 |
codecarbon==2.8.1
|
2 |
+
scikit-learn==1.5.1
|
3 |
+
datasets==3.2.0
|
4 |
+
huggingface-hub==0.26.3
|
5 |
+
python-dotenv==1.0.1
|