import gradio as gr from codecarbon import EmissionsTracker # Import necessary libraries from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report, accuracy_score import pandas as pd import numpy as np # Let's create a sample dataset (you can replace this with your own data) def create_sample_data(): np.random.seed(42) n_samples = 10000 # Create features (X) X = np.random.randn(n_samples, 4) # 4 features # Create target (y) - binary classification y = (X[:, 0] + X[:, 1] + X[:, 2] > 0).astype(int) return X, y # Get data (replace this with your data loading code) X, y = create_sample_data() tracker = EmissionsTracker() def submit(username): tracker.start() tracker.start_task("train_model") # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=42 ) # Initialize the model rf_model = RandomForestClassifier( n_estimators=1000, max_depth=5, random_state=42 ) # Train the model print("Training the model...") rf_model.fit(X_train, y_train) training_emissions = tracker.stop_task() tracker.start_task("inference") rf_model.predict(X_test) inference_emissions = tracker.stop_task() emissions = inference_emissions.emissions energy = inference_emissions.energy_consumed return [emissions, energy] # Update the interface configuration demo = gr.Interface( fn=submit, inputs=gr.Textbox(label="Username"), outputs=[ gr.Number(label="Emissions (kgCO2eq)", precision=6), gr.Number(label="Energy Consumed (kWh)", precision=6) ], title="Carbon Emissions Tracker", description="Track the carbon emissions and energy consumption of model training and inference." ) # Launch the Gradio interface if __name__ == "__main__": demo.launch()